

Developing a
Data Delivery Platform

With Composite Information Server

A Technical Whitepaper

Author:
Rick F. van der Lans

Independent Business Intelligence Analyst
R20/Consultancy

June 21, 2010

Sponsored by

Copyright © 2010 R20/Consultancy. All rights reserved. Composite Software, Composite
Information Server, Composite Active Cluster, Composite Application Data Services, and
Composite Discovery are registered trademarks or trademarks of Composite Software, Inc.
Trademarks of other companies referenced in this document are the sole property of their
respective owners.

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Table of Contents

1. Summary … 1

2. What is the Data Delivery Platform? … 2

3. Advantages of the Data Delivery Platform … 3

4. Open versus Closed Federation Servers … 5

5. What is Composite Information Server? … 8

6. On-Demand Transformation versus Periodic Transformation … 7

7. How does Composite Information Server Work? … 9

8. Accessing Data Stored in Foreign Tables … 10

9. Integrating Data from Different Databases … 13

10. Presenting Different Tables Structures to Different Reports … 15

11. Transforming XML Documents and Web Services to Tables … 16

12. Making Data Stored in MDX Cubes Available as Relational Data … 19

13. Dealing with Repeating Groups and Procedures … 20

14. Keeping Track of All Relationships … 22

15. Exposing Views as Data Services … 23

16. Caching Views … 25

17. Optimization Techniques for Accessing Foreign Tables … 27

18. Security Features … 31

19. Inserting, Updating, and Deleting Data … 32

20. Conclusion … 32

About the Author Rick F. van der Lans … 34

About Composite Software … 34

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Developing a Data Delivery Platform with Composite Information Server 1

Copyright © 2010 R20/Consultancy, All Rights Reserved.

1 Summary

The Data Delivery Platform (DDP) is a modern architecture for developing business intelligence
systems where data consumers, such as reporting and analytical tools, are decoupled from data
stores. This whitepaper describes how to develop such an architecture using the federation server
called Composite Information Server. The concepts and facilities of Composite Information Server
are described in such a way that developers and BI specialists get a feeling of how this product works,
what its features are, and what it would mean to develop a DDP-based business intelligence
architecture using this federation server.

The Data Delivery Platform is a business intelligence architecture that offers many advantages for
developing business intelligence systems, including increased flexibility of the architecture,
shareable transformation and reporting specifications, easy migration to other data store
technologies, cost reduction due to simplification of the architecture, easy adoption of new
technology, and transparent archiving of data. The DDP can co-exist with other more well-known
architectures, such as the Data Warehouse Bus Architecture, and the Corporate Information
Factory.

Composite Information Server is an open federation server capable of presenting a heterogeneous
set of data stores as one logical database. This unified view can be used by almost any reporting and
analytical tool, and in addition it can be accessed by applications through service-oriented
interfaces. All those tools and applications will share the transformation specifications managed by
Composite Information Server.

Unlike classic ETL tools that are based on periodic transformation, federation servers, such as
Composite Information Server, deliver on-demand transformation. Periodic transformation means
that the data sources accessed by the reporting tools are refreshed periodically. It also means that
several derived data stores must be developed and maintained to store the periodically copied data.
With on-demand transformation, when a reporting tool requests data, only then is data retrieved
from the data stores and only then is the data transformed. The advantages are that users can work
with more timely data, there is less need for creating and managing derived data stores, and report
and transformation changes can be applied more quickly. These features make a federation server
ideal for developing a Data Delivery Platform.

Views and data services are the core building blocks of Composite Information Server. Views are
used by data consumers such as analytical and reporting tools to access data using relational
methods. Data services are used by consumers such as applications and websites to access data
using service-oriented methods. Beyond this consuming method distinction, Composite
Information Server views and data services perform common functions. As a result and for the
purpose of this paper, we will focus primarily on views.

Views are used as transformation steps. Each view can hold a number of transformation steps, such
as join, selection, projection, and aggregation. Views can be stacked on top of each other. For
different user(group)s different sets of views can be defined. Shareable transformation
specifications can be placed in views that must be used by all users. Views can also be used to

Developing a Data Delivery Platform with Composite Information Server 2

Copyright © 2010 R20/Consultancy, All Rights Reserved.

transform data stored in XML documents, sequential files, MDX cubes, SOAP-based services, and
Java components, to relational tables. This makes it possible to seamlessly integrate non-relational
with relational data.

Composite Information Server offers several mechanisms to optimize query performance, including
advanced distributed join optimization, instant and scheduled caching, and push-down of query
processing to the underlying database servers. In addition, developers can see how a query is being
processed. The caching features of Composite Information Server make it possible to implement
periodic transformation, if needed by the users.

To summarize, Composite Information Server is a mature and feature-rich open federation server.
Its modular approach and its extensive optimization technologies make it very well suited for
developing a business intelligence architecture based on the Data Delivery Platform.

2 What is the Data Delivery Platform?

The Data Delivery Platform (DDP) is a modern architecture for developing business intelligence
systems where data consumers (such as reports developed with SAP BusinessObjects
WebIntelligence, SAS Analytics, JasperReport, or Excel) are decoupled from data stores (such as
data warehouses, data marts, and staging areas); see Figure 1. The DDP was introduced in a number
of articles published at BeyeNETWORK.com, including The Definition of the Data Delivery
Platform. The definition of the DDP is:

The Data Delivery Platform is a business intelligence architecture that delivers data and meta
data to data consumers in support of decision-making, reporting, and data retrieval; whereby
data and meta data stores are decoupled from the data consumers through a meta data driven
layer to increase flexibility; and whereby data and meta data are presented in a subject-oriented,
integrated, time-variant, and reproducible style.

The primary goal of decoupling is to get a higher level of flexibility. For example, changes made to
the data stores don’t automatically mean that changes must be made to the data consumers as well,
and vice versa. Or, replacing one data store technology by another is easier when that data store is
‘hidden’ behind the DDP.

Decoupling data consumers from data stores is based on the concept of information hiding. This
concept was introduced by David L. Parnas1 in the 70s and was adopted soon after by object
oriented programming languages, component based development, and service oriented
architectures. But until now, the concept of information hiding has only received limited interest in
the world of data warehousing.

The DDP can be seen as a separate business intelligence architecture, but it can also co-exist with

1 David L. Parnas, ‘Software Fundamentals, Collected Papers by David L. Parnas’, Addison-Wesley Professional,
2001.

Developing a Data Delivery Platform with Composite Information Server 3

Copyright © 2010 R20/Consultancy, All Rights Reserved.

more well-known architectures, such as Ralph Kimball’s Data Warehouse Bus Architecture2, Bill
Inmon’s Corporate Information Factory3, and his more recent architecture called Data Warehouse
2.04. In addition, some other generic architectures exist, such as the Centralized Data Warehouse
Architecture and the Federated Architecture; see the article Which Data Warehouse Architecture is
Most Successful? by T. Ariyachandra and H.J. Watson, published in 2006.

da
ta

ware
hous

e

The Data Delivery Platform

da
tam

art

uns
tru

ctu
red
da

ta

pro
du

cti
on

da
tab

ase
ex

ter
nal

da
ta cub

e

ser
vic

e
da

ta

ware
hous

e

The Data Delivery Platform

da
tam

art

uns
tru

ctu
red
da

ta

pro
du

cti
on

da
tab

ase
ex

ter
nal

da
ta cub

e

ser
vic

e

3 Advantages of the Data Delivery Platform

Two principles are very fundamental to the Data Delivery Platform architecture: shared
specifications and decoupling of data consumers and data stores. Both these principles lead to a
number of advantages that are described in this section.

Most reporting and analytical tools require specifications to be entered before reports can be
developed. Some of those specifications are descriptive and others are transformative. Examples of
descriptive specifications are definitions of concepts; for example, a customer is someone who has
bought at least one product, and the Northern region doesn’t include the state Washington. But
defining alternative names for tables and columns, and defining relationships between tables are
also descriptive specifications. Examples of transformative specifications are ‘how should country
codes be replaced by country names’, and ‘how a set of tables should be transformed to one cube’.
In the DDP those specifications are centrally managed and are shareable. The advantages resulting
from shared specifications are:

Easier maintenance of specifications: Unfortunately, in most cases descriptive and
transformative specifications can’t be shared amongst reporting and analytical tools. So, if two
users use different tools the specifications must be copied. The advantage of the DDP is that most

2 R. Kimball et al., The Data Warehouse Lifecycle Toolkit, Second Edition, John Wiley and Sons, Inc. 2008.
3 W.H. Inmon, C. Imhoff, and R. Sousa, Corporate Information Factory, Second Edition, John Wiley and Sons,
Inc., 2001.
4 W.H. Inmon, D. Strauss, and G. Neushloss, DW 2.0, The Architecture for the Next Generation of Data
Warehousing, Morgan Kaufmann Publishers, 2008.

Developing a Data Delivery Platform with Composite Information Server 4

Copyright © 2010 R20/Consultancy, All Rights Reserved.

of those specifications can be defined once and can be used by all the tools. Therefore, maintaining
existing and adding new specifications is easier.

More consistent reporting: If all reporting and analytical tools use the same specifications to
determine results, the results will be consistent, even if the tools are from different vendors. This
improves the perceived quality of and trust in the business intelligence environment.

Increased speed of report development: Because most specifications already exist within the
DDP and can be re-used, it takes less time to develop a new report. Development can focus
primarily on the use of the specifications.

As indicated, in a DDP data consumers are decoupled from the data stores. This means that the
data consumers don’t know which data stores are being accessed: a data warehouse, a data mart, or
an operational data store. Nor do they know which data store technologies are being accessed, an
Oracle or DB2 database or maybe Microsoft Analysis Service. The advantages resulting from this
decoupling are:

Easier data store migration: Data store independency means that if a report that accesses a
particular data store can easily be migrated to another data store. The report’s queries can be
redirected through the DDP to that other data store. For example, if a report is currently accessing
a data mart, migrating it to the data warehouse doesn’t require any changes in the report definition.
The same applies if a need exists to migrate from a relational database to MDX-base technology, or
if SQL Server has be replaced by Netezza. In most cases, these changes will have no impact on the
reports. In short, if a DDP is in place, migration to another data store (technology) is easy. There
are various reasons why an organization wants to migrate, for example, they may want to use
technology that offers faster query performance, or data storage is outsourced and needs to be
accessed differently.

Cost reduction due to simplification: If the DDP is installed in an existing business intelligence
architecture, for example one based on the Corporate Information Factory architecture, the DDP
makes it possible to simplify the architecture. Data marts and cubes can be removed and the
existing reports must be redirected to another data store, which, as indicated, is easy to do with the
DDP. The advantage of this simplification of the architecture is cost reduction.

Increased flexibility of the architecture: With less code and fewer specifications, it is easier to
change a system. The DDP makes it possible to simplify the architecture and to work with
shareable specifications. The effect is that new user requirements and demands can be
implemented faster. In other words, the time to market for new reports is shortened.

Seamless adoption of new technology: New database and storage technology has appeared on
the market, such as data warehouse appliances, analytical databases, columnar databases, and solid
state disk technology. As indicated, because the DDP separates the data consumers from the data
stores, replacing an existing data store technology with a new one is relatively easy and has no
impact on the reports.

Transparent archiving of data: Eventually data warehouses become so big that ‘older’ data has to
be archived. But if data is old, it doesn’t always means that no one is interested in it anymore. The

Developing a Data Delivery Platform with Composite Information Server 5

Copyright © 2010 R20/Consultancy, All Rights Reserved.

DDP can hide where and how archived data is stored. Archiving data, meaning data is taken out of
the original data store and moved to another, can be hidden for the data consumers. If users are
still interested in all the data, the DDP can combine the non-archived data with the archived data
store. The effect might be that the performance is slower, but reports don’t have to be changed.
Therefore, the DDP hides that some data has been archived.

4 Open versus Closed Federation Servers

But how should a Data Delivery Platform be developed? Currently, the best approach is to use a
federation server (sometimes called an enterprise information integration tool and today a critical
component in a data virtualization suite). A federation server, like the DDP, presents multiple
heterogeneous data stores as one logical data store to the applications and tools. To them accessing
the federation server is very similar to logging on to one large database. Without knowing it,
reports join data coming from different data stores, and even data stores that use different storage
models and concepts. Because a federation server presents this unified view of the data, it can act as
the core building block of a DDP.

Various analytical and reporting tools implement a form of federation technology themselves. For
example, Qlikview is more than capable of accessing a set of heterogeneous data stores, the same
applies for the tools of SAP/Business Objects, IBM/Cognos, and many others. For example, the
Universe concept in Business Objects can be seen as federation technology. However, all the
specifications entered in these products are only usable by the tools themselves (or tools of the
same vendor); see Figure 2. These are non-sharable specifications. Therefore, these federation
technologies are called closed federation servers.

Data stores

Closed Federation Server

Data stores

Closed Federation Server

Like a closed federation server, an open federation server can access many different data stores, but
in addition it also allows access for any BI tool and application; see Figure 3. The effect is that the
specifications stored in the federation server become shareable. If, for example, we define that the
Northern Region doesn’t include the state Washington, each and every tool that accesses the
federation server can make use of that same specification, whether it’s Excel or SAS Analytics. This
improves the maintainability of the environment, but it also minimizes the chance that users using
different tools see inconsistent results.

Developing a Data Delivery Platform with Composite Information Server 6

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Open Federation Server

Data stores

Open Federation Server

Data stores

5 What is Composite Information Server?

A number of federation servers is available. This whitepaper describes how to develop the DDP
with one of the more popular open federation servers called Composite Information Server from
Composite Software.

Composite Software, which is based in San Mateo, California was founded in 2002. This was also
the year the first version (1.0) of Composite Information Server was released. Currently, Version 5.1
of Composite Information Server is being shipped. The Composite Information Server forms the
foundation of the Composite Data Virtualization Platform. On the OEM front, the product is also
distributed by Netezza, IBM/Cognos, Informatica, Pitney Bowes, SAS, BMC, and many more.

Besides being able to access almost any relational database server, including DB2, Microsoft SQL
Server, MySQL, Netezza, and Oracle, Composite Information Server makes it possible to access
XML documents, MDX databases, flat files, spreadsheets, and other non-relational data stores.
Composite Information Server will ‘flatten’ these non-relational stores to tables. This makes it
possible that, for example, an Excel spreadsheet can join data stored in an SAP InfoCube with an
XML document, or that a Cognos report combines data in an Oracle database with data from
Microsoft Analysis Service.

Together with their other product Composite Application Data Services, even modules inside
applications, such as those of Oracle, Salesforce.com, and SAP, can be turned into tables that can
be queried using any type of tool. In fact, any Java component can be queried as if it’s a table. So
again, this means that, for example, a report can combine data from an external source by using
SOAP with internal data stored in a relational database.

Reporting tools can use any of the popular API’s, including JDBC, ODBC, and ADO.NET, to access
data. In addition, Composite Information Server can present data as services through SOAP, REST,
and XQuery. In addition, applications can access the data through JMS as well.

Figure 4 contains a diagram that shows the architecture of Composite Information Server and
includes most of the data stores that can be accessed and most of the API’s being supported.

Developing a Data Delivery Platform with Composite Information Server 7

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Composite Information Server

XQuery, Java, WSDL, SCA
(Services Centric)

Front-end Applications

Security

Metadata Repository
Views, SQLScript
(Database Centric)

Security

Query Engine

Cost-based
Optimizer

Rules-based
Optimizer

Federation
Engine

Web Services
(HTTP, REST, SOAP, JSON, XQuery)

SQL
(ODBC, JDBC, ADO.NET)

Messaging
(JMS)

Java
(POJO)

Web Services
(HTTP, SOAP, JSON)

Messaging
(JMS)

Application
APIs

RDBMS

Web Services Flat Files Custom

Mainframe

Applications

Messages OLAP Cubes

MF
Adapter

Java
(POJO)

Cache (View, Web Services, Procedure)

Database In-memory*File

Excel

SQL
(ODBC, JDBC)

XML

URI

Composite Information Server

XQuery, Java, WSDL, SCA
(Services Centric)

Front-end Applications

Security

Metadata Repository
Views, SQLScript
(Database Centric)

Security

Query Engine

Cost-based
Optimizer

Rules-based
Optimizer

Federation
Engine

Web Services
(HTTP, REST, SOAP, JSON, XQuery)

SQL
(ODBC, JDBC, ADO.NET)

Messaging
(JMS)

Java
(POJO)

Web Services
(HTTP, SOAP, JSON)

Messaging
(JMS)

Application
APIs

RDBMS

Web Services Flat Files Custom

Mainframe

Applications

Messages OLAP Cubes

MF
Adapter

Java
(POJO)

Cache (View, Web Services, Procedure)

Database In-memory*File

Excel

SQL
(ODBC, JDBC)

XML

URI

What this whitepaper shows is that all the specifications relating to the data are shared by all tools
and applications accessing Composite Information Server.

6 On-Demand Transformation versus Periodic Transformation

In most current business intelligence architectures the format and the contents of the data stored
in the source systems is quite different from how the users want to see the data in their reporting
and analytical tools. Here are some examples: in the source systems customer data might be spread
out over multiple databases while users want to have an integrated view, data is the source systems
might be heavily coded while users want to see meaningful values, historical data might be missing
from the source systems while users need it for trend analysis, or the values of data elements in
source systems might be incorrect (defective data) while users want to work with correct data, and
so on. To summarize, source data has to be ‘massaged’ before users can use it. This whole process is
sometimes referred to as data transformation.

Developing a Data Delivery Platform with Composite Information Server 8

Copyright © 2010 R20/Consultancy, All Rights Reserved.

In classic business intelligence architectures data transformations are executed by ETL jobs (Extract
Transform Load). In most cases all the data transformation is not done in one step, but in multiple
where intermediate results are stored in various data stores, such as staging areas, operational data
stores, and data marts. Additionally, the ETL jobs are scheduled to run periodically, for example,
once a week or every midnight. So all the data transformation takes place before users run the
reports. In other words, the transformation of data is done in advance and periodically. In this
whitepaper we will refer to this form of transformation as periodic transformation; see Figure 5. In
most cases, ETL tools are used for data transformations.

transfor-
mation

transfor-
mation

transfor-
mation

Federation servers offer on-demand transformation. When the user executes his report or runs his
analysis, only then is data queried and integrated. It’s almost as when the report is executed, the
data flows from the databases through the federation server to the reports. The federation server
will do the necessary transformations. It’s comparable to buying a sandwich created right in front of
you (on-demand), versus one that has been prepared in a factory, wrapped in plastic, and sent to a
store (periodic).

On-demand transformation offers the following advantages to the users:

 Users can work with more timely data.
 Less need exists for creating derived data stores, which will reduce costs.
 With less data stores, the overall architecture will be simpler, and that means the whole

architecture is more flexible.
 The time-to-market for new reports is better; creating a new report might only require a few

hours work before the required data is available.
 Sometimes reports must be developed that will run only once, on occasion these are called

throw-away reports. If a report is used only once on-demand transformation fits better.

But some disadvantages of on-demand transformation must be considered as well:

 Transformations are done repeatedly. Every time a report accesses data, that data will go
through the same transformations (unless a cache is used, see Section 16). Compare this to
periodic transformation, where data is only transformed once or a few times, in fact only
when data is added or changed. Note that this is only true for those solutions where only
new data is copied; in some organizations all the data is copied every time. In that case, the
same transformations are also done repeatedly.

 The transformation might be so complex that it takes too long.

Developing a Data Delivery Platform with Composite Information Server 9

Copyright © 2010 R20/Consultancy, All Rights Reserved.

 Some production systems overwrite old data when new data is entered. If this historical
data is needed, it must be copied from the source for retention in a special data store (for
example a staging area or operational data store) using a periodic transformation approach.

Whether data is transformed on-demand or periodically, each tool involved in data transformation
should at least support the following types of operations:

 Transformation: Values in columns are changed by applying, for example, concatenations,
code transformations, calculations, and string manipulations.

 Join: Data in two or more tables are combined into one table.
 Aggregation: Rows are grouped based on equal values in certain columns.
 Selection: Rows are selected based on specified conditions.
 Projection: Columns are selected, and others are removed.

One more consideration: Most organizations want to cleans defective data before it is used by the
reporting and analytical tools. Special tools exist on the market to help out with this. These tools
can, for example, help with the spelling of company names, or can find the correct zip code. Some
of the simple forms of cleansing can be implemented with an on-demand transformation solution.
But beyond these simple cases, it’s recommended to perform the more complex quality functions
using periodic transformation, or by cleansing the data stores accessed by the federation server.

7 How does Composite Information Server Work?

When are we allowed to call a solution a Data Delivery Platform? To which requirements should it
adhere? In the article The Requirements of the Data Delivery Platform the requirements are listed
for an implementation of a Data Delivery Platform-based system. An example of such a
requirement is that a DDP-based system should support access to a large array of heterogeneous
data store technologies and systems, including relational database technology, MDX-based
database technology, and XML-storage technology, and web services. Another requirement is that a
DDP-based system should support all the common types of integration, including name changes,
joins, selects, aggregations, splits, projections, and cleansing.

The next sections describe how particular features and concepts are implemented in Composite
Information Server (CIS). This should give readers a feeling of how CIS meets the requirements of
the Data Delivery Platform.

Developing a Data Delivery Platform with Composite Information Server 10

Copyright © 2010 R20/Consultancy, All Rights Reserved.

The following features are described:

 Accessing tables stored in relational database servers.
 Integrating data stored in databases managed by different database servers.
 Presenting different table structures to different reports.
 Making XML documents and web services accessible as tables.
 Making MDX cubes accessible as tables.
 Flattening repeating groups and accessing procedures as tables.
 Tracking all the relationships between views and tables (lineage analysis).
 Making relational tables be accessible as data services.
 Caching data for performance reasons and how CIS supports periodic transformation.
 Optimization techniques for running queries on foreign databases.
 Securing the access to data.

8 Accessing Data Stored in Foreign Tables

A Data Delivery Platform has to give the data consumers (the reporting tools) access to data stored
in relational databases, such as Oracle11g, Microsoft SQL Server, and MySQL. This is also one of the
easiest things to do in Composite Information Server. In this whitepaper we refer to such a table
with the term foreign table.

Each foreign table that needs to be accessed has to be imported. This import process is quite
simple. CIS will create a connection with the database server, reads data from the catalog, such as
column names, data types, null specifications, and population data. This meta data is stored in the
CIS catalog. Once the table is known to CIS, it becomes a data source that can be used within views
and data services.

If the data type of a specific column is not according to that of a standard SQL data type a
conversion is made automatically. For example, in Figure 6 the foreign table called
has some columns with a data type called . This data type is transformed to the standard
integer data type. The transformation to standard data types is quite important when columns from
different database servers are joined and their respective data types are not 100% identical.

When a data source has been created for a foreign table, it’s not yet accessible by the reporting
tools. First, a view (or data service) has to be created for it. Only then does the foreign table become
accessible for all the tools; see Figure 7. A view in CIS is very much comparable to the view concept
in SQL database servers. Basically, it’s a query definition with a name and a set of columns. The
contents of the view is virtual and is derived from underlying tables and views. Later in this
whitepaper we will discuss the notion of cached views, meaning the contents of the view is not
virtual, but is stored (temporarily) in a cache.

Developing a Data Delivery Platform with Composite Information Server 11

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Accessing a view is as simple as accessing a table in an ordinary database. For example, if a tool uses
SQL and an API, such as ODBC, JDBC, and OLE DB, to log on to CIS, the latter will show the view
as a table. The reporting tool won’t see the difference between CIS and a classic SQL-based
database server.

foreign
table

Data source with technical specifications, such as connection,
column names, data types, statistics on population, and nulls

View with logical specifications, such as row selections,
column selections, column concatenations and transformations,
column and table name changes, groupings, and sorts

A view may be defined in such a way that it contains exactly the same contents as the underlying
foreign table: all the rows and all the columns. But if required, the view contents can be adapted, or
in other words, transformation operations can be specified. Here are some of the supported
transformation operations:

 Conditions can be specified to select a subset of all the rows from the foreign table.

Developing a Data Delivery Platform with Composite Information Server 12

Copyright © 2010 R20/Consultancy, All Rights Reserved.

 Columns in the foreign table can be removed from the view.
 Columns in the foreign table can be concatenated.
 Names of the columns in the foreign table and the name itself can be changed.
 New virtual and derivable columns can be added.
 Group-by operations can be specified to aggregate data.
 Statistical functions can be specified.

Almost all the features of SQL are available to transform the structure and contents of the
underlying foreign table to a view. Composite also provides several procedural language options to
perform additional functions that are beyond the limits of standard SQL.

All these transformations can be defined in two ways. One, by writing SQL directly, or two, by
filling in a grid with specifications from which SQL is generated automatically; see Figures 8 and 9.
The first figure contains the SQL statement and the second the grid. If one is changed by the
developer, the other is automatically changed accordingly. The tabs are just different views of the
same definition.

Views can be defined on top of other views. This stacking of views can have different purposes. For
example, it could be useful if two user(group)s have common transformation needs plus both have
specific transformation needs. The common specifications can be placed in an intermediate view
and the group specific transformations can be specified in separate views; see Figure 10. Another
example why it would make sense to stack views on top of each other is when different reports or
different user(groups) want to see the data in a specific foreign table differently. For example, one
group might want to see the data in a slightly aggregated way, whereas another group is only
interested in a subset of all the rows from the table. In this case different views are defined on the
same data source.

Developing a Data Delivery Platform with Composite Information Server 13

Copyright © 2010 R20/Consultancy, All Rights Reserved.

foreign
table

View with common specifications
for all user groups

Views with user(group)
specific specifications

9 Integrating Data from Different Databases

Reports normally require that data in different tables and even tables in different systems are
merged together. In CIS this is done by creating a view that has as basis the join of two or more
foreign tables. Those tables can be part of the same database, or from separate databases. They can

Developing a Data Delivery Platform with Composite Information Server 14

Copyright © 2010 R20/Consultancy, All Rights Reserved.

even be tables stored in databases of different database servers. For example, Figure 11 shows a join
of tables stored in respectively an Oracle, DB2, and Netezza database. Specifying such joins is quite
simple. If foreign tables have been imported, views can be defined on them.

Oracle DB2 Netezza

CIS offers various ways to create joins. For example, it can be done graphically; see Figure 12 where
five tables are joined. When a join is created graphically, the query that contains the join is created
as well. At the bottom of that same figure a set of tabs is shown. The tab called contains the real
query, and the tab called holds the virtual contents of the view. To create a join developers can
also write the query by hand.

Developing a Data Delivery Platform with Composite Information Server 15

Copyright © 2010 R20/Consultancy, All Rights Reserved.

The view that holds the join, can have extra conditions, aggregations, and so on. Figure 13 contains
a column called in which the tables are listed that are being joined together. The column
called contains all the columns that must be presented, including concatenations of
columns. At the bottom of that same figure, the result of the join with all the extra conditions and
transformations are shown.

So, basically, developing a join of foreign tables is as simple as creating a number of data sources
and then writing a query with a join.

10 Presenting Different Table Structures to Different Reports

Foreign tables have structures typically organized for the applications and tools accessing them
directly. But usually they don’t have the right structure for reports and other uses. For example,
some tools prefer the tables to have a star schema arrangement, others prefer a snowflake schema

Developing a Data Delivery Platform with Composite Information Server 16

Copyright © 2010 R20/Consultancy, All Rights Reserved.

arrangement, and a third group likes to see the data fully normalized5. By creating multiple levels of
views in CIS, for each tool the ideal table structures can be defined.

Let’s illustrate this with an example. Imagine that a set of foreign tables doesn’t have the right
normalized structure. A set of views can be defined in CIS that transforms the tables to the required
normalized form; see Layer 2 in Figure 14. Next, on top of those views a set of views is defined that
contains transformations that apply to all the users; this would be Layer 3 in that same figure.
Subsequently, for each tool a separate set of views is defined that presents the data in a form
suitable for that tool; Layer 4. This could mean that one set of tables has a star schema
arrangement, and the other a snowflake schema arrangement, and the third a classic normalized
arrangement. This might all be dependent on the tools used by the users. In other words, Layer 4
will contain the specifications that are specific to a user or tool, while Layers 2 and 3 contain
shareable specifications that apply to all the users.

Oracle
table

DB2
table

Netezza
table

Oracle
table

DB2
table

Netezza
table

Layer 1

Layer 2

Layer 3

Layer 4

Another option could be that the views on Layer 2 are modeled according to the design principles
of Data Vault, and that Layer 3 contains the more user specific specifications.

Because so many specifications can be entered in the definitions of the views, there is far less need
to have those specifications inside the reporting and analytical tools themselves. This frees those
tools to focus on their strengths, such as analytics, visualization, reporting, and drill-downs. So,
even if these tools support light federation capabilities themselves, with this shared specifications
approach, these limited functions won’t be needed.

11 Transforming XML Documents and Web Services to Tables

Not all data needed for analytics and reporting is stored in relational tables. It can be stored in all
kinds of data stores and formats. This section shows how data stored in XML documents and how

5 M. Golfarelli and S. Rizzi, Data Warehouse Design – Modern Principles and Methodologies, McGraw-Hill,
2009.

Developing a Data Delivery Platform with Composite Information Server 17

Copyright © 2010 R20/Consultancy, All Rights Reserved.

data only accessible through SOAP web services, can be imported into CIS and becomes accessible
as tables.

Before data in an XML document can be used, it has to be flattened, or in other words, the
hierarchical structure of the XML document has to be turned into a flat relational table. In CIS, the
mechanism to do this is by defining a data source for the document. A special module of CIS is
designed for developing data sources that flatten XML documents; see Figure 15.

In this figure, the column called contains the structure of the XML document, and the
column called contains the required table structure. A transformation is specified by linking
elements from the XML document to columns in the data source (slightly curly arrows). The arrows
indicate how the hierarchical structure of the XML document should be mapped to a table with
columns. This XML document contains a number of categories, and each category might consist of
a set of products. Each product has a product id, name, description, serial number, and some other
characteristics. On the right hand side of that figure you see the flat relational structure. This data
source contains a row for each product, and for each product a few columns of which one is the
category. At the bottom of Figure 15 you can see the contents of the data source.

Developing a Data Delivery Platform with Composite Information Server 18

Copyright © 2010 R20/Consultancy, All Rights Reserved.

As with the foreign tables, to make data available for access, a view has to be defined on top of the
data source; see Figure 16. If certain rows of the document must be left out, or if certain
transformations must be applied, they can be defined in this view.

XML
XSLT program that transforms the
hierarchical structure to a table

Transformations, aggregations,
selections, and so on

This view on top of a data source can be used like any other view, so, for example, data stored in
XML documents can be joined with data stored in relational tables; see Figure 17.

foreign
table XML foreign

table

Behind the scenes, the language used for this transformation is the standardized language called
XSLT; see one of the tabs at the bottom of Figure 15. This language is used for executing the
transformation. The graphical presentation of XSLT offers only limited functionality. If developers
want, they can use the full power by coding XSLT by hand.

In the same way that XML documents can accessed as relational tables, so can web services with
SOAP interfaces be accessed as relational tables; see Figure 18. The result of a SOAP service is an
XML document. The only difference is that to call a service, input parameters must be specified,
and the result is known when the web service execution is finished. But besides those differences,
developing a data source for a SOAP service is comparable to developing one for an XML
document.

SOAP
XSLT program that transforms the
hierarchical structure of the service
result to a table

Transformations, aggregations,
selections, and so on

Developing a Data Delivery Platform with Composite Information Server 19

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Why would we be interested in joining relational tables with the result of a web service? There are
several reasons. A service might give access to an external website, one that delivers external data,
such as demographic data, weather-related data, or price information of competitive products. It
might also be that data stored inside a packaged application can only be accessed through a web
service, one that has been pre-defined by the vendor. More and more internal and external
information is accessible through web services. Therefore, CIS makes it possible to integrate all
these data sources and make them accessible as if they are flat tables.

Note: Besides SOAP, CIS also supports service-oriented data source interfaces based on JSON and
HTTP.

12 Making Data Stored in MDX Cubes Available as Relational Data

In data warehouse environments, data is sometimes stored in MDX cubes. This is a storage
technology not based on tables and columns, but on dimensions and hierarchies. To be able to
access data in MDX cubes the language MDX must be used.

Microsoft’s MDX (MultiDimensional Expressions) was first introduced as part of their OLE DB for
OLAP specification in 1997 and has quite some support in the market. The specification was quickly
followed by a commercial release of Microsoft OLAP Services 7.0 in 1998 and later by Microsoft
Analysis Services. Many vendors have currently implemented the language, including
Oracle/Hyperion (TM1), Microstrategy, SAS, and SAP, and vendors on the client side, such as
IBM/Cognos, SAP/Business Objects, and Microsoft.

MDX is a powerful language for querying MDX cubes, but there a few limitations. For example, it
can’t join relational tables with cubes, nor can data in different cubes be joined. CIS allows cubes to
be wrapped as data sources. Afterwards, if a view is defined on the data source the data cube can be
integrated with any other table, cube, or XML document.

Creating a data source on MDX is comparable to creating one on an XML document, except that
XSLT is not used internally but MDX. The MDX query can be defined using a graphical user
interface or by writing MDX directly

foreign
table XML MDX

Being able to access MDX cubes as tables offers several practical advantages:

Developing a Data Delivery Platform with Composite Information Server 20

Copyright © 2010 R20/Consultancy, All Rights Reserved.

 Data stored in MDX cubes can be joined with data stored in tables, XML documents, web

services, and other cubes.

 If data is stored in MDX cubes, it can only be accessed by tools supporting MDX. By

creating a data source and view on top, it can be accessed using SQL, or in other words, it
can be accessed by almost all tools available on the market. For example, data stored in an
MDX cube can be accessed by Excel; the result might look like Figure 20.

 Migration to MDX becomes easier. If certain SQL queries on a set of foreign tables are slow,

and if we expect that running similar queries on an MDX implementation will be faster, the
data can be moved to a cube, and CIS will hide the fact that MDX is be used; see Figure 21.
No rewrite of the report is required.

MDX

SQL SQL

SQL
table

13 Dealing with Repeating Groups and Procedures

In some older systems, data might be stored as repeating groups, meaning a set of comparable
values is stored ‘next to each other’ instead of ‘underneath each other’. For example, if we would
store in a table the total sales values for each quarter in one row, those four columns would form a
repeating group. In Figure 22 a simple table contains four such columns (data1 up to data4). Most
reporting tools have difficulty in processing those repeating groups, so they must be transformed in
such a way that they are presented underneath each other in four different rows. This
transformation process is sometimes called pivoting. Pivoting such a table into a table where those
four values are stored underneath each other, as separate rows, can be done in CIS by using
procedures.

Developing a Data Delivery Platform with Composite Information Server 21

Copyright © 2010 R20/Consultancy, All Rights Reserved.

A procedure is a piece of code that returns a set of rows. The code is written in a procedural
language that resembles PL/SQL of Oracle and Transact-SQL of Microsoft SQL Server. Because a
procedure in CIS returns a set of rows, a view can be defined on top of it. The effect is that the
procedure with the view on top can be treated like any other view.

Figure 23 shows the procedure that pivots the table. The code is short and not too complex. This
particular procedure returns a table of rows where each row contains one value. Procedures can
also be used for very complex transformation for which procedural code is the only solution.
Procedures are allowed to access views.

Developing a Data Delivery Platform with Composite Information Server 22

Copyright © 2010 R20/Consultancy, All Rights Reserved.

14 Keeping Track of All Relationships

A large environment may end up with many views, and many relationships between the views and
the data sources. It’s important that developers and administrators can quite easily see all those
relationships. It’s important for example for determining what the effect will be if the structure of a
foreign table or view changes; which other views have to be changed as well?

CIS stores all the definitions of data sources, views, procedures, and so on, in one central repository.
This makes it easy for CIS to show all the dependencies between those objects. For example, Figure
24 shows a dependency diagram that presents all the views and data sources that directly and
indirectly make up a view called (on the left hand side of the diagram). This is
sometimes called a lineage diagram. Such a diagram allows us to do impact analysis. If the structure
of a foreign table or view changes, we can see on which other views it might have an impact.

When objects such as views and tables are interrelated, what will happen if the underlying foreign
table is changed? For example, what happens if a column is added to a foreign table, if one is
removed, if the data type of a column is changed, or if a column is renamed? The solution is
introspection. CIS can introspect a foreign table, determine that something has changed, and then
it can then indicate which changes have been applied to the foreign table. This by itself is already
very useful. But CIS can also automatically make comparable changes to the views and data sources
that are directly or indirectly dependent on the changed foreign table. Imagine that a column is
dropped from a foreign table, CIS will notice that and it can remove that column from each view
that uses that column, and it will change the queries accordingly.

Developing a Data Delivery Platform with Composite Information Server 23

Copyright © 2010 R20/Consultancy, All Rights Reserved.

15 Exposing Views as Data Services

Most views in CIS will be accessed by reporting tools using SQL. But CIS does also allow views to be
accessed as data services. In other words, the views are exposed as SOAP- or REST-based services.
This can be done for every view defined in CIS, including the ones defined on XML documents,
MDX cubes, and sequential files. The advantage is that non-BI consumers, such as an internet
application or a more classic data entry application, can also use the data made available to the BI
consumers; see Figure 25. They will share the same specifications, and data will be consistent across
the BI and other environments.

SQL

application

SOAP API

To expose a view as a service, we have to go through a number of relatively simple steps. First, we
must define how the column structure of the view has to be transformed to an XML structure; see
Figure 26. Note that defining this transformation is not mandatory. If we want to create a service
that has a flat XML structure, then that flat XML structure can be derived automatically from the
view structure. However, if we want to bring some hierarchy to the structure and make it look like a
real XML structure, we must define a transformation.

Developing a Data Delivery Platform with Composite Information Server 24

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Next, an XML schema must be generated for this service; see Figure 27. In addition, the WSDL
document must be generated. When this step is completed, the service is ready to be accessed. Any
application that can access a service can access a CIS data service. CIS itself will process the service
requests.

Developing a Data Delivery Platform with Composite Information Server 25

Copyright © 2010 R20/Consultancy, All Rights Reserved.

16 Caching Views

Regardless of how efficient a federation server is, it’s an extra layer of software that sits between the
reporting tools and the data stores, so it will consume cpu cycles and it will increase the response
time of queries. Although the performance of a query is determined by the amount of time used by
the federation server plus the time used by the underlying database server(s), the latter will
consume most of the processing time, and the former only a small fraction. Still, it’s important that
a federation server optimizes and improves the performance of queries as much as possible. In this
and the coming sections a few of the techniques deployed by CIS are described. This section
explains caching of views.

CIS offers an extensive and flexible caching mechanism. In CIS caching means that the contents of
a view is retrieved from the underlying tables and stored in a file or table. The effect is that when
the view is queried the underlying view, table, service, or XML document is not accessed, but the
data in the cache is. Accessing a cache can seriously improve the performance of a query on a view.

For every view a cache can be defined. Defining a cache involves nothing more than switching it on
for a view. Technically it means that the query that makes up the definition of the view is executed
and the result is stored in stead of passed to an application. The next time this view is queried, the
data is retrieved from the cache; see Figure 28. Administrators can determine whether a cache
should be defined and how the cache of the view should be refreshed: once or periodically. If
periodically, we can specify at what time. Refreshing of the cache can be scheduled or it can be
done manually. A cached view is sometimes referred to as a materialized view. Defining a cache for
a view is simple; see Figure 29.

SQL
table

SQL

As indicated, caches can be stored in files or tables. Retrieving cached data stored in files is
normally very fast, especially if large subsets of all the records must be retrieved. If a query on a
cached view only needs a small set of rows or if it contains a group-by operation, an index might be
useful to speed up that query. In that case, a table is recommended because it can be indexed.

Developing a Data Delivery Platform with Composite Information Server 26

Copyright © 2010 R20/Consultancy, All Rights Reserved.

There can be various reasons for defining a cache:

 Load optimization: A cache might be useful to minimize the load on the underlying system.
It could be that a view is defined on tables in an old system that already has issues with
performance. Additional queries might be too much for this system. By defining a cache,
fewer queries will be executed on the old system.

 Consistent reporting: A cache could also be useful if a user wants to see the same report

results if he runs a report several times for a specific period of time (a day, week, or month).
This is typically true for users of reports. It can be quite confusing if the same report returns
different results. In this case, a cache might be necessary if the contents of the underlying
database are constantly being updated.

 Source availability: If the underlying system is not always available, a periodically refreshed

cache might enable 7x24 operation.

 Complex transformations: The transformations to be applied to the data might be so
complex that doing them on-demand might be too slow. Storing the transformed result in
the cache and reusing the result several times, might be more efficient.

Developing a Data Delivery Platform with Composite Information Server 27

Copyright © 2010 R20/Consultancy, All Rights Reserved.

The side effect of caching is that the data returned when querying the view may no longer be 100%
up-to-date. Plus, caching means that we switch from on-demand transformation to periodic
transformation.

By defining several cached views on one and the same view that contains the required data,
different users can access the same data even when they need different caching settings. For
example, we could define two views V1 and V2 on top of view V3. V3 contains the right data for all
users. V1 shows all the data of V3 and uses a cache that is refreshed once a day, whereas V3 also
shows all the data of V3 but uses a cache that is refreshed once a month.

17 Optimization Techniques for Accessing Foreign Data

The previous section described caching as a mechanism for optimizing queries. This section
describes some of the query optimization techniques CIS supports.

When accessing foreign tables, data is first retrieved by the database server from disk. Next it’s
transferred to the federation server, and finally the data is sent to the report. The database server
itself is responsible for optimizing I/O, meaning it’s responsible for the amount of data transferred
from the disks to the database server. For a large part, the amount of data transferred determines
the performance of a query. In addition, a federation server is responsible for optimizing data traffic
between the database server and itself. Again, the amount of data sent over the network between
the servers determines for a large part the performance of the queries.

This means that a federation server has to optimize the amount of data transferred between the
data stores where those tables reside and itself. It’s the module called the optimizer that is
responsible for this. This module is very much comparable to the optimizer of a relational database
server. The difference though is that optimizers of database servers try to optimize the amount of
I/O, whereas the optimizer of a federation server tries to optimize the amount of data traffic
between the data stores and itself. Below we explain the key features of Composite’s optimizer
including:

 Combining queries
 SQL pushdown
 Substitution
 Parallel processing
 Distributed joins
 And other advanced query optimization techniques.

First of all, if a query is executed on a view that is defined on a number of other views, which are
also defined on other views, how does CIS execute these queries? What won’t happen is that query
after query is executed sequentially. Imagine that a query is executed on view V1 which is defined
on views V2 and V3, and those are defined on tables T2 and T3 respectively. What will not happen is
that first V2’s query is executed on T2, then V3’s query on T3, next those results are combined and
joined and the result is kept somewhere in memory, and finally the query on V1 is executed on that

Developing a Data Delivery Platform with Composite Information Server 28

Copyright © 2010 R20/Consultancy, All Rights Reserved.

intermediate result. Although this approach will return the correct result, it would be slow. The
approach taken by CIS is that queries are combined into one query which is passed to the database
server to be executed. So, in the example the queries belonging to the views V1, V2, and V3 plus the
query entered by the application are combined into one query which leads to a join of tables T2 and
T3. So it will be the database server that’s doing the join and not CIS. In short, all the layered
queries are coalesced into one single comprehensive query and optimized accordingly.

As indicated, the goal of the CIS optimizer is to minimize the amount of data send from the foreign
data stores to the federation server. So it will try to ‘push’ as much processing to the underlying
database servers themselves. This means that selections (such as, get only the customers from
London), projections (such as, get only the names and addresses of the customers), and group-by
operations are pushed down. Evidently, this is not possible for every data store. For example, if the
data store is a sequential file, an XML document, or a SOAP service, no optimization can be
executed by the data store, the federation server has to do all the work. It will retrieve all the data
(unless a cache exists because then the data is retrieved from that cache).

If the query is a one-table query and the data store is a database server the whole query is pushed
down and only the result of the query is returned. If two tables are joined and both are stored in the
same database, again a query with a join is pushed down to the database server. It’s a little bit more
complex if two tables are joined and if they are not managed by the same database server. An
inefficient strategy would be to retrieve all the data from both database servers and let CIS do the
join because it would involve a lot of data traffic. CIS supports a few techniques to process this
more efficiently, which we will discuss next.

If one of the two tables is relatively small (approximately 100,000 rows or less), that table could be
read first and kept in memory. Next, the large table is read, and row by row comparisons are made
with the smaller table in memory.

Another approach is that the data from the small table is retrieved first. Then the query on the large
table is extended with data coming from the smaller table. Let’s illustrate this with an example.
Imagine we want to join a large with a small table with the following query:

Developing a Data Delivery Platform with Composite Information Server 29

Copyright © 2010 R20/Consultancy, All Rights Reserved.

First, CIS will get all the rows from :

Let’s assume the result consists of the values 1 to 8. Next, it will merge the result with a query on
the table:

The effect is that only relevant data from the large table is returned to CIS in stead of all the rows.
This style of processing joins is called distributed semi-join. This same approach can be used when
the small table is not a table at all, but a file or XML document.

When two large tables must be joined, CIS will use a so-called sort-merge join. In this case, both
tables are retrieved from the two data stores and both have been sorted by the database server on
the join columns. The effect is that the database servers perform the sorts, and CIS only has to do
the merge. Let’s take the following join as an example:

The following statement is send to the first data store:

And a comparable statement is send to the other:

Merging the two results is straightforward for CIS. The advantage of this approach is that the work
still to be done is the merge-step and that should not take that much processing time. Still, a lot of
data is sent, but most of that processing is done in parallel.

When tables are joined and one or more are cached, it might be that the cache is used. Imagine that
tables T1, T2, and T3 are joined together and that a cached view is available on the join result of T2
with T3. In this case, CIS will perform a join of T1 using the cache. If that cache is small, CIS might
use the distributed semi-join approach again to join them.

Another form of optimization is that as much work is ‘pushed down’ to the underlying database
server(s). For example, if a join has to be executed between tables T1, T2, T3, and T4, and if the last

Developing a Data Delivery Platform with Composite Information Server 30

Copyright © 2010 R20/Consultancy, All Rights Reserved.

three of those tables are stored in the same database, a query that contains a join of those three
tables is send to the database server. The result of this join is then joined with table T1. Push down
is an optimization mechanism that allows to do as much processing as close to the data itself. Plus,
if more database servers are involved, processing can be done in parallel.

And if nothing else works, CIS performs a nested loop join, which is slow, but will return a correct
result.

For most of the decisions the CIS optimizer has to make, it has to know the approximate size of the
result set on each side of the join. CIS automatically gathers such data from the data stores. This
type of data is sometimes called statistical data. There are of course sources that can’t offer that
type of data. For example, an XML documents and SOAP services can’t answer questions
concerning the number of rows they contain. In that case, statistical data can be entered by hand.

If developers have the feeling that the optimizer isn’t coming up with the best possible strategy
commands and hints can be specified. With commands the optimizer is forced to go for a specific
strategy and with hints the optimizer can follow a strategy.

Developing a Data Delivery Platform with Composite Information Server 31

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Another optimization form is that developers can see what CIS’ processing strategy will be for a
query. They can see the order in which tables are joined; see Figure 30. If they can come up with a
better strategy, they can change the order in which particular operations take place.

To summarize, CIS supports many approaches and techniques to optimize the access to the data
stores. Together, they give developers and administrators various instruments to optimize the
performance of queries, and to influence when and how queries are executed. Research in this area
will continue and has to continue because the size of databases keeps increasing.

18 Security Features

CIS offers a rich set of security features, including authentication, authorization, and encryption.
All three are described in this section.

With respect to authentication, users who access CIS must present credentials (such as a user id
and a password) to identify themselves; in other words, CIS checks whether they are really who
they say they are. CIS can be configured in such a way that an external system, such as Kerberos, is
used for authentication. In that case CIS will ask the external system to perform the authentication.

Users can be introduced and defined within CIS, but user definitions can also be stored outside CIS,
for example in LDAP directories. Users can be grouped in domains and in user groups.
Unfortunately, groups can’t be nested.

It’s not likely that every user should have access to all the data accessible through the federation
server. Therefore, CIS offers features for authorization to control which user is allowed to access
which data elements.

To each user group and individual user access privileges for views and data services can be
assigned; see Figure 31. This is somewhat similar to assigning privileges to users with the GRANT
statement in SQL. Figure 31 shows that the following types of privileges are supported: read, write,
execute, select, update, insert, and grant.

Besides the privileges in CIS, the user has to have the privileges inside the underlying database
servers to access certain tables.

It might be that two users may query the same view, but they are not allowed to see the same rows.
For example, a manager might see the data on all the customers, but an account manager may only
see the customers he is responsible for. Therefore, CIS supports row-level security. In the definition
of a view we can add a condition that includes the id of the user so that only those rows are
returned that the user is allowed to access.

Developing a Data Delivery Platform with Composite Information Server 32

Copyright © 2010 R20/Consultancy, All Rights Reserved.

If applications call the views via a SOAP service interface, there might be a need that those calls are
encrypted. CIS accomplishes encryption by using SSL as the connection mechanism.

19 Inserting, Updating, and Deleting Data

The Data Delivery Platform is primarily query focused. As a result, CIS functionality is as well.
Nevertheless, CIS does support inserts, updates, and deletes within the underlying databases and
files that are typically sources to the DDP. CIS also supports multi-site transactions by using the
two-phase commit protocol.

20 Conclusion

Composite Information Server is a powerful and flexible open federation server that delivers on-
demand transformation of data stored in various data stores. Using the extensive caching
mechanism it can also offer periodic transformation. The product hides where and how data is
stored to reporting and analytical tools and applications. Internally, it has a very modular structure
based on views and data sources that allows developers to setup their federation solution the way
they think is right. Internally, the popular language SQL is used to specify nearly all the required
aggregations, transformations, and calculations. Because SQL is used, the tool is easy to learn for
most developers.

Developing a Data Delivery Platform with Composite Information Server 33

Copyright © 2010 R20/Consultancy, All Rights Reserved.

In a nutshell, CIS offers the following features:

 Transparent query access to relational and non-relational data stores, including XML, MDX,
services, files, and spreadsheets

 On-demand transformation of data coming from different data stores.
 Wide range of data transformation and data delivery capabilities.
 Management of shareable transformation specifications.
 Data access security rules.
 Optimization techniques for improving query performance.

All these features make CIS a product with which a Data Delivery Platform can be developed. CIS is
capable of decoupling data consumers and data stores the way needed in a modern business
intelligence architecture.

Developing a Data Delivery Platform with Composite Information Server 34

Copyright © 2010 R20/Consultancy, All Rights Reserved.

About the Author Rick F. van der Lans

Rick F. van der Lans is an independent analyst, consultant, author and lecturer specializing in data
warehousing, business intelligence, service oriented architectures, and database technology. He
works for R20/Consultancy, a consultancy company he founded in 1987.

Rick is chairman of the annual European Data Warehouse and Business Intelligence Conference
(organized in London), chairman of the BI event in The Netherlands, and he writes for the B-eye-
Network.

He introduced the Data Delivery Platform in 2009 in a number of articles that were published on
BeyeNetwork.com.

He has written several books on SQL. His popular Introduction to SQL was the first English book on
the market in 1987 devoted entirely to SQL. After more than twenty years, this book is still being
sold, and has been translated in several languages, including Chinese, German, and Italian.

For more information please visit www.r20.nl, or email to rick@r20.nl.

About Composite Software

Composite Software, Inc. is the data virtualization gold standard at ten of the top 20 banks, six of
the top ten pharmaceutical companies, four of the top five energy firms, major media and
technology organizations; and multiple government agencies. These are among the hundreds of
global organizations with disparate, complex information environments that count on the
Composite to increase their data agility, cut costs and reduce risk. Backed by nearly a decade of
pioneering R&D, Composite is the data virtualization performance leader, scaling from project to
enterprise for data federation, data warehouse extension, enterprise data sharing, real-time and
cloud computing data integration. Composite Software is a privately held, Silicon Valley-based
corporation. For more information, please visit www.compositesw.com.

