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SQL-on-Hadoop Engines Explained 1

1 Management Summary

Big Data HEnd Hadoop — Hadoop is being regarded as one of the best
platforms for storing and managing big data. It owes its success to its
high data storage and processing scalability, low price/performance
ratio, high performance, high availability, high schema flexibility, and
its capability to handle all types of data. Unfortunately, Hadoop APIs,
such as HDFS, MapReduce, and HBase, are quite complex. They require expertise in Java programming (or
similar languages) and require in-depth knowledge of how to parallelize query processing efficiently. The
downsides of these interfaces are a small target audience, low productivity, and limited tool support.

The technical interfaces of
Hadoop lead to a small target
audience, low productivity,
and limited tool support.

The Need For SOL-on-Hadoop Engines — What is needed is a programming interface that retains HDFS’s
performance and scalability, offers high productivity and maintainability, is known to non-technical users,
and can be used by many reporting and analytical tools. The obvious choice is evidently SQL. SQL is a high-
level, declarative, and standardized database language, it’s familiar to countless Bl specialists, it’s
supported by almost all reporting and analytical tools, and has proven
its worth over and over again. To offer SQL on Hadoop, SQL query
engines are needed that can query and manipulate data stored in
HDFS or HBase. Such products are called SQL-on-Hadoop engines.

SQL-on-Hadoop engines can
query and manipulate big
data stored in Hadoop.

Lately, the popularity of SQL-on-Hadoop engine is growing rapidly. Here are just a few of the many SQL-
on-Hadoop engines available: Apache Drill, Apache Hive, CitusDB, Cloudera Impala, Concurrent Lingual,
Hadapt, HP Vertica, InfiniDB, JethroData, MemSQL, Pivotal HAWQ, Progress DataDirect, ScleraDB, Shark,
and SpliceMachine.

On the outside most of the SQL-on-Hadoop engines look alike. They all support some SQL-dialect that can
be invoked through ODBC or JDBC. Internally, they can be very different. The differences stem from the
purpose for which they have been designed. Here are some potential use cases for which they may have
been designed:

e batch-oriented query environment (data mining)

e interactive query environment (OLAP, self-service BI, data visualization)
e point-queries (retrieving and manipulating individual objects)

e investigative analytics (data science)

e operational intelligence (real-time analytics)

e transactional (production systems)

Undesired Big Data Silos — Most Hadoop-based systems have been designed and developed by organizations
for one or two use cases. The workload characteristics of these use cases are usually massive data load
and execution of non-interactive, complex forms of analytics. However, Hadoop implementations can
support other use cases, including interactive reporting, data stream processing, transactional processing,
and text search. The growing availability of SQL-on-Hadoop engines has just widen the range of use cases
of Hadoop even more.

Unfortunately, when deployed for a different use case, a specific Hadoop implementation may be
unsuitable with regard to functionality or performance. Development of another use case may force an
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SQL-on-Hadoop Engines Explained 2

organization to develop a second solution in which data is stored again. In the long run, this results in
many data management platforms: each one designed and optimized to support a limited number of use
cases. Finally, this leads to undesirable big data silos.

The disadvantages of having big data silos are: high costs because of
data duplication, high data latency, complex data replication solutions,
and data quality problems. Silos may work well temporarily, but
history has shown that eventually the users of these silos will want to
combine data from multiple data sources. When this happens, each
application is extended to access multiple data sources. This leads to a
dedicated integration solution for each one of them. The result is another undesired solution: an
integration labyrinth. For an organization it’s almost impossible to guarantee that all these integration
solutions are correct, efficient, and lead to consistent results.

Big data silos leads to data
duplication, high data
latency, complex data

replication solutions, and
data quality problems.

The Need For One Data Management Platform — The ROI on all big data
stored in Hadoop is increased when it’s made available for as wide a
range of use cases as possible, including all the new use cases offered
by the SQL-on-Hadoop engines. What is needed is one Hadoop data
management platform that has been designed to support all the current and future use cases, so that the
need for duplication of all that big data is minimized and that the development of big data silos and an
integration labyrinth is avoided.

One Hadoop platform should
support all the current and
future use cases.

The Whitepaper — This whitepaper explains what SQL-on-Hadoop engines are, what the technological
challenges are, and what potential use cases of SQL-on-Hadoop are. Besides a high-level comparison of
several of these engines, it also contains a detailed description of Apache Drill that brings to light some of
the pertinent issues in providing SQL capabilities on big data. In addition, the MapR Technologies data
management platform M7 is also described as an example of a big data platform that can support many
different use cases.

2 Requirements for Big Data Systems

IT Systems in the 0ld Days — There was a time when the IT industry measured database sizes in gigabytes. It
was a time when IT systems were primarily designed to support business processes, such as invoicing,
financial accounting, manufacturing, purchasing, and product planning. These production systems were
developed to make these processes more efficient and cheaper.

Most business intelligence environments are still processing data copied from these production systems.
Periodically, data is retrieved from them, and integrated, cleansed and stored in a data warehouse. A wide
range of reporting and analytical tools is used to analyze what has happened. These ERP-type production
and data warehouse systems are incredibly valuable to organizations, but because every organization has
them, they don’t allow organizations to stand out, they don’t always offer a real distinguishing capability
or competitive advantage.

Increasing Importance of Analytics — Now, fast forward. Today, IT systems can make organizations stand out

and dramatically improve the internal operations of organizations as well as improve how they are
perceived by and interact with their customers, suppliers, and agents. IT systems can improve customer
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SQL-on-Hadoop Engines Explained 3

care and pre-active customer care, optimize business processes, personalize products and services, and so
on.

One dominant technology that can help an organization to stand out is
analytics. Algorithms for, for example, data mining, predictive
modeling, and forecasting, have become incredibly powerful and help
organizations to identify business insights.

Analytics can make
organizations stand out.

Analytics itself has been around for many, many years. There are three main reasons why it is so much
more popular now. First of all, relatively inexpensive and fast computing power and data storage
technology have become available for advanced forms of analytics that were unthinkable of a few years
ago. They allow larger data sets to be stored for acceptable costs and working with these larger data sets
can improve the quality of analytical exercises. Next, the tools have become much easier to use. Users
don’t need PhDs in statistics anymore to use analytical tools. And finally, more external data sources, such
as social media networks, weblogs, web interactions, socio-demographic data, and numerous open data
sources, have become available and can be used to enrich analytics.

Big Data — All these improvements resulted in much bigger databases than organizations were used to.
This gave way to the big data trend, which can be considered to be one of the most popular trends in the
IT industry.

Big data applications store amounts of data magnitudes larger than
those in more traditional applications. For example, click-stream
applications, sensor-based applications, text-analysis, and image
processing applications, all generate massive numbers of records per
day. The amount of records stored surpasses more often than not
hundreds of millions of records.

Big data applications store
amounts of data magnitudes
larger than those in more
traditional applications.

The sheer amount of data has a direct impact on the database technology used. For this reason,
organizations started to consider other types of data storage technology that were different from familiar
and classic SQL database servers. This need convinced vendors and startups to research and develop new
database technology, which resulted in the market of Hadoop and NoSQL technology. Products such as
Hadoop, MongoDB, Cassandra, Riak, and many more were introduced.

Requirements for Data Storage Technology — Together, big data and the new forms of analytics, raise the bar
for data storage technology. To be ready for big data, data storage technology must adhere to the
following requirements:

e High data storage scalability: To deal with the volume of the data, the data storage technology
should be designed and optimized to store, process, analyze, and manage massive amounts of
data over a large set of nodes and disks.

e High data processing scalability: To handle the database size and workloads, it's important that
data storage technology is able to distribute its data processing over very large sets of nodes and
supports a highly parallel architecture. It must have a scale-out architecture with almost no limit
to the level of parallelization.
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SQL-on-Hadoop Engines Explained 4

e High performance: It's important that analytical and reporting requests are processed fast, even if
they’re highly complex and even if they access massive amounts of data.

e Low price/performance ratio: The price/performance ratio
consists of two key aspects. First, because so much data has to
be stored, data storage technology must be able to exploit
inexpensive commodity hardware and disk technology.
Second, license fees of data storage technology should not be
related to the database size. Else, it would make a big data environment very costly and thus
forcing analysts to work with less data, which limits analytical capabilities. A low
price/performance ratio is required to make analytics on big data affordable.

Data storage technology
must be able to exploit
inexpensive commodity

hardware and disk

e All data types: Some big data, such as sensor data, such as sensor data, is highly structured.
Weblog files and text messages are clear examples of data that cannot easily be organized in
relational columns. Sometimes this type of data is unjustly referred to as unstructured data. There
is structure in this type of data, it’s just not an obvious structure. Nevertheless, to deal with the
variety of big data, the data storage technology should support functionality for all types of data:
structured, not structured, and everything in between.

o High schema flexibility: Data may be stored without a schema. Because analysts may want to
study that data differently at different times, data storage technology should be flexible enough
to allow applications to read schema-less data with different schema’s at different times. Schema
flexibility means that there is no need for time- and resource consuming data reorganization
work. High schema flexibility demands the support for schema-on-read. This concept is explained
in Section 6.1.

e Fast loading: To support the velocity level that big data systems require, data storage technology
must be able to load thousands and thousands of records per second or minute. In addition, this
massive ingestion workload should not cause any form of delay or disruption on reporting and
analytics,

e Enterprise-grade: More and more organizations rely on big data systems. They have become
crucial to core business processes. Therefore, data storage technology must offer robustness and
stability, 24x7 availability, high-end concurrency (large numbers of concurrent users), data
consistency (users should never see two inconsistent versions of the data at the same time), data
security and authorization, and stable performance (one application should not be able to
consume all the resources and slow down processing for all others).

3 Analytics with Classic SQL Database Servers

Production systems commonly use classic SQL database servers to store data. Therefore, it makes sense
that organizations first evaluate these database servers for storing big data. Practice has shown, however,
that some of the requirements listed in the previous section are hard to meet by them. With respect to
the requirements for high performance, data storage and processing scalability, and enterprise-grade,
they have proven themselves for years, even in the heaviest data- and query-intensive environments, and
even when the databases grew to many terabytes large.
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SQL-on-Hadoop Engines Explained 5

For the other requirements, it’s a different story:

e High data storage and processing scalability: The scale-out level of the architectures of most
classic SQL database servers is limited. They have been designed for scale-up. They do a
reasonable job with scale-out, but because of their architectures leaning towards centralization,
there is a limit to the scalability level. They can’t really distribute their processing over hundreds
of nodes, which may be needed for big data systems.

e All data types: Originally, classic SQL database servers have been designed to store and
manipulate structured data. They have been extended to handle text, XML-structured data, and
some other non-standard structured data types. The operations applied to this type is usually
complex. An example of such a complex operation is sentiment analysis on text. Because it's a
resource intensive operation, it’s important that it's executed in parallel on as many nodes as
possible. Distributing complex operations over many nodes is difficult for most classic SQL
database servers.

e Low price/performance ratio: As indicated, the license fee for several products is related to the
database size, which can lead to expensive big data environments. In addition, most products can
only offer high performance when installed on high-end SMP machines using expensive SAN or
NAS data storage hardware.

e High schema flexibility: Handling unstructured and semi-structured data is not always easy,
because in SQL systems data is organized in tables and columns. Afterwards, columns can be
added or dropped, but storing and especially accessing data without a structure is difficult—no
real support for schema-on-read. Usually, SQL database servers support schema-on-write and not
schema-on-read.

To summarize, currently implementing big data systems on classic
SQL database servers with non-decentralized architectures may be
an expensive choice and can lead to scalability problems when
unstructured data has to be processed. For ultimate scale-out, data
storage technology with a highly non-centralized architecture is
required.

For ultimate scale-out, data
storage technology with a
highly non-centralized
architecture is required.

4 Hadoop as Platform for Big Data Analytics

The Coming of Hadoop — Because classic SQL database servers do not always meet the requirements for big
data systems, the hunt was on for other data storage products. In fact, long before traditional
organizations experienced the need for big data systems, companies such as Google, Yahoo!, Facebook,
and Twitter, were already struggling with scalability and performance demands. They were the first to
recognize that classic SQL products wouldn’t suffice. Therefore, some decided to develop their own data
storage solutions. Most of these home-made projects inspired several open source products. For example,
Google’s Big Table was the inspiration for the development of many others, including Apache HBase,
Hypertable, and Cassandra.
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One of the most popular and successful new data storage products is without any doubt Apache Hadoop.
Hadoop has been designed to store, process, and analyze large amounts of data from terabytes to
petabytes and beyond. It was also designed to process all this data in parallel on a hardware platform
consisting of inexpensive commodity computers (no need for expensive high-end machines and storage
technology). Also, because moving big data across networks is hard, Hadoop was designed to move the
processing to the data and not vice versa.

For example, on a traditional platform, a full scan of a data file containing one hundred millions records
takes a long time. With Hadoop this file can be distributed over hundreds of nodes and disks resulting in a
parallelized execution of the scan greatly improving its performance, even if the file contains billions of
rows.

The Modules of Hadoop — Hadoop can be regarded as a stack of software modules from which the
developers can pick and choose. Figure 1 illustrates the Hadoop modules on which this whitepaper
focuses.

Figure 1 Hadoop consists of a number of modules including HOFS, YARN,
MapReduce, and HBase (the light blue boxes).

Application

™

HBase ] l MapReduce

| |
YARN

HDFS

1 | | I
- | | - | |
. B A B

We briefly introduce the core modules here. For more extensive descriptions, we refer to Tom White’s
book" on Hadoop.

e HDFS: The foundation of Hadoop is formed by the Hadoop Distributed File System (HDFS). This
module is responsible for storing and retrieving data. It's designed and optimized to deal with
large amounts of incoming data per second and for managing enormous amounts of data up to
petabytes. The key aspect of HDFS is that it can distribute data over a large number of disks and
has been designed to exploit an MPP (Massively Parallel Processing) architecture. HDFS supports a
well-designed programming interface that can be used by any application. Note that Apache HDFS
is an append-file only system, data stored in Apache HDFS files cannot be changed—a record in a
file cannot be replaced.

! White, Tom, Hadoop, The Definitive Guide, O’Reilly Media, 2012, third edition.

Copyright © 2014 R20/Consultancy, all rights reserved. @



SQL-on-Hadoop Engines Explained 7

e YARN: YARN (Yet Another Resource Negotiator) is one of the newer modules introduced in
Hadoop version 2. As the name indicates, it's a resource manager. It’s responsible for processing
all requests to HDFS correctly and for distributing resource usage correctly. And like all other
resource managers, it should assure that performance is stable and predictable. The main reason
why YARN has been introduced is to let multiple computing frameworks run on the same Hadoop
cluster using the same underlying storage. So, for example, a company could process data using
MapReduce, a graph engine, or a data streaming engine (see Section 11), all without having to run
multiple clusters.

e Hadoop MapReduce: MapReduce offers a programming interface with which developers can
write applications to query the data in HDFS. MapReduce can efficiently distribute query
processing over hundreds of nodes. It pushes any form of processing to the data itself, and thus
parallelizes the execution and minimizes data transport within the system. MapReduce has a
batch-oriented style of query processing. MapReduce is well suited for schema-on-read
environments. MapReduce benefits from the concept of data locality supported by HDFS. So, to
improve scalability, clusters containing no relevant data, are not used when a MapReduce job
executes. However, MapReduce doesn’t know where individual records are stored. So, selecting a
particular customer record from a file, can still lead to scans. Important to note is that the
MapReduce programming interface is very technical and requires a deep understanding of the
internal workings. Version 1 of MapReduce operates directly on HDFS and contains its own crude
resource manager. Version 2 runs straight on YARN.

e Hadoop HBase: The HBase module is designed for applications that need random, real-time,
read/write access to data. The new version operates on top of YARN to exploit its resource
managing capabilities. Where HDFS offers a typical file APl (open file, append to file, and close
file), HBase has an API consisting of operations such as insert record, get record, and update
record. HBase’s APl is not set-oriented. HBase is usually categorized as a NoSQL system.

APIs and Implementations — The Apache Software Foundation has
developed implementations of all these modules, and they defined
and documented their interfaces. Other vendors have developed
alternative implementations of the same modules but with the same
interface. Examples of alternative HDFS implementations are Amazon
S3, the MapR Data Platform, and CassandraFS; see Figure 2. Vendors
have also developed alternative implementations of MapReduce, HBase, and YARN; see also Section 10.

Many alternative
implementations exist of the
Hadoop modules all
supporting the same APIs.

Many reasons exist why vendors develop alternative implementations of these modules. It may be that
they have been designed to make them easier to manage and use, to use computing resources differently,
or to run specific workloads faster.

Alternative implementations must support the same technical interface guaranteeing that an application
developed for one, can run unchanged on another. They must be binary compatible.
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_ Figure 2 Alternative
Apache HBase API Apache HBase API implementations of the Apache
Hadoop modules exist. To be

Apache HDFS API

Apache MapR Amazon Rl
Implementation Implementation Implementation able to port applications, they all
I I I support the same AP,
| ] P

Does Hadoop Meet the Requirements for Big Data Systems? — Section 3 describes whether SQL database servers
meet the requirements for big data systems. Here, we describe how Hadoop satisfies these requirements:

High data storage scalability: HDFS has been designed and optimized to handle extremely large
files. For example, there is not a real maximum file size and each file is broken into big blocks (or
chunks) of 64MB. In real life projects, Hadoop has repeatedly proven that it's able to store,
process, analyze, and manage big data.

High data processing scalability: Hadoop has been designed specifically to operate in highly
distributed environments in which it can exploit large numbers of nodes and drives. There is
almost no centralized component that could become a bottleneck and lead to performance
degradation. For example, one hundred drives working at the same time can read one terabyte of
data in two minutes. In addition, MapReduce processing is moved to the nodes where the data is
located.

High performance: Together with HDFS, MapReduce offers high performance reporting and
analytics. One of the features of HDFS is data replication which makes concurrent access to the
same data (on different nodes) possible.

Low price/performance ratio: Hadoop has been designed to exploit low-cost commodity
hardware and the license fees of commercial Hadoop vendors are not based on the amount of
data stored.

All data types: HDFS is a file system, so it has no knowledge of what is being stored in the files,
nor does it require that knowledge. Whether weblogs, emails, or records with sensor data are
stored, for HDFS it’s all bytes. In addition, functions can be developed in MapReduce that have the
same complexity found in SQL statements and beyond. MapReduce is not limited to playing with
structured data. MapReduce allows applications to access any form of data. For example complex
functions can be developed to analyze text or complex weblog records. If programmed correctly,
MapReduce is able to process these complex functions completely in parallel, thus distributing
this complex and I/0O and resource intensive processing over a large set of nodes.

High schema flexibility: Using HDFS, data can be stored in its original, raw form and MapReduce
can be used to assign any structure to the data that the applications wants. Schema-on-read is
fully supported.

Copyright © 2014 R20/Consultancy, all rights reserved. @
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e Fast loading: HDFS has been designed to load massive amounts of data. For example, benchmarks
with HDFS implementation of MapR show that it’s capable of loading one gigabyte of data per
second.

e Enterprise-grade: HDFS supports built-in data replication capabilities for fault tolerance and high
levels of data availability. However, there are various features, which are common in classic SQL
database servers, that are missing in HDFS. HDFS is robust and stable, and does offer 24x7 data
availability due to replication across clusters. Apache HDFS itself does not offer read consistency,
other HDFS-compatible platforms may. With respect to high-end concurrency, that’s the
responsibility of the application running on HDFS. YARN offers rudimentary resource management
capabilities to guarantee a stable performance.

Summary Hadoop — Hadoop’s high data storage and processing scalability, high availability, high
performance, and support for flexible data structures, make it an attractive platform for supporting big
data systems. In addition, because it runs on relatively inexpensive hardware, it offers an attractive
price/performance ratio.

5 The Need for SQL-on-Hadoop

The Drawbacks of Low-level Interfaces — HDFS, MapReduce, and HBase
offer APIs for accessing data. Both allow applications to be developed
for the simplest queries to the most complex forms of analytics.
Unfortunately, all three APIs are quite complex. They require expertise
in Java programming (or a similar language) and in-depth knowledge of how to parallelize query
processing efficiently. Here are the drawbacks of these interfaces:

The Hadoop APIs are complex
and require expertise in Java
programming.

e Small target audience: These interfaces make Hadoop unsuitable for most of the business
analysts, data scientists, and other non-technical users, who typically don’t have such skills. The
consequence is that the potential analytical power of MapReduce is limited to a happy few.

e Low productivity: Due to their technical interfaces, the productivity of developing in Hadoop APIs
is not high (compared to, for example, developing in SQL) and analysis can be time-consuming as
well.

e Limited tool support: Many tools for reporting and analytics don’t support the MapReduce and
HBase interfaces and can therefore not be used for developing reports on big data. Most of them
only support SQL. If such tools must be used, the only option is to copy all the data to a SQL
database server. This is a costly and time-consuming exercise.

The Need for SQL-on-Hadoop — What is needed is a programming interface that retains HDFS’s performance
and scalability, offers high productivity and maintainability, is known to non-technical users, and can be
used by many reporting and analytical tools. The obvious choice is evidently SQL.

The first SQL-on-Hadoop engine introduced a few years ago is called Apache Hive. Hive offers a SQL-like

interface for querying data, manipulating data, and for creating tables. It supports a dialect of SQL called
HiveQL. HiveQL offers the traditional features of SQL, including the windowing functions. To parallelize
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query processing, Hive translates SQL statements to MapReduce jobs;
see Figure 3. If the data is stored using HBase, the SQL statements are
translated to the HBase API. Note that the SQL-on-Hadoop engine Hive
does not replace MapReduce and/or HBase, but augments them.
Applications can still select their preferred API.

Apache Hive is the first SQL-

on-Hadoop engine allowing

big data to be queries using
SaL.

Figure 3 Hive offers a SQL interface to data stored in HDFS and works on
top of MapReduce and HBase.

Application

l Hive |

b
HBase ][MapReduce
.
| -
YARN
| -
HDFS
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-] | = |
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In 2013, the market started to understand the importance and business value of a SQL interface. The
result was that many other SQL-on-Hadoop engines were announced and introduced, such as Drill,
Facebook Presto, HAWQ, Impala, and Shark. Furthermore, the Stinger project was started to improve Hive
and lead to, among other things, the development of YARN. Even vendors that were not always associated
with open source software released solutions, such as IBM BigSQL, Quest Toad for Cloud Databases, and
Salesforce.com Phoenix.

To summarize, the big advantages of having a SQL interface on Hadoop are as follows:

e Large target audience: Many business analysts and data scientists are familiar with SQL and can
exploit all the big data. This must increase the ROI of a big data investment.

e High productivity: Writing queries in SQL requires a lot less coding than when the same logic is
written in MapReduce. This improves the time-to-market for reports and improves
maintainability.

e Openness to many tools: Almost every reporting and analytical tool is capable of accessing data
when it’s accessible via SQL. Due to these SQL-on-Hadoop engines, these hundreds of tools can
now be used to access big data stored in Hadoop. The same applies for all the data integration
tools, such as ETL tools and data virtualization products, that can use the SQL interface to extract
data from and pump data in HDFS.
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Not All SQL-on-Hadoop Engines Are Created Equal — On the outside, most of the SQL-on-Hadoop engines look
alike. They all support some SQL-dialect that can be invoked through ODBC or JDBC. Internally they are
different. The differences stem from the purpose for which they have been designed. Here are some
potential use cases for which they may have been designed:

e batch-oriented query environment (data mining)

e interactive query environment (OLAP, self-service Bl, data visualization)
e point-queries (retrieving individual objects)

e investigative analytics (data science)

e operational intelligence (real-time analytics)

e transactional (production systems)

Organizations must know which types of usage they need, because most of the SQL-on-Hadoop engines
are not generic SQL implementations. This is not very different from the market of SQL database servers
itself. For example, there are products optimized for a transactional workload while others exceed in
complex forms of analytics.

Multiple SOL-on-Hadoop Engines Accessing the Same Data — Many applications won’t be able to tell the
difference between a SQL-on-Hadoop engine and a SQL database server. Internally, there is one big
difference: with SQL-on-Hadoop engines there is independence between, on one hand, the SQL-on-
Hadoop query engine and, on the other hand, the file system and its files; see Figure 4.

In SQL-on-Hadoop engines query engine and the file system with its
files are interchangeable. The consequence is that data can be inserted
in a particular HDFS file using, for example, Impala, and afterwards
accessed with Drill; see Figure 5. Or, a SQL query engine can seamlessly
switch from the Apache HDFS file system to the MapR Data Platform or
to the Amazon S3 file system depending on the file system requirements of the applications.

Data can be inserted with one
SQL-on-Hadoop engine and
accessed using another.

One big advantage of this independence is that different query engines, each with its own strengths and
weaknesses, can be deployed on the same data. For example, for one group of users a SQL engine can be
selected that is designed to support high-end, complex analytical queries, and for the other group an
engine that’s optimized for more simple interactive reporting. This is comparable to having one flat screen
that can be used as TV, computer screen, and as projector screen, instead of having three separate
screens. The second advantage is that there is no need to copy and duplicate the data, which, in a big data
environment can be very costly.

This independence does not exist for classic SQL database servers. They come with their own file systems
and file formats. This means that a database file developed with, for example, Oracle, can’t be accessed
afterwards using DB2. To be able to do that, the data must be exported from the Oracle database and
imported in the DB2 database. In these systems, the SQL query engine plus the file system and its files
form one indivisible unit. In a way, it’s a proprietary stack of software for data storage, data manipulation,
and data access.
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S0L-on-Hadoop and the Metadata Store — Another difference between SQL-on-Hadoop engines and SQL
database servers relates to the metadata. Most SQL-on-Hadoop engines document the structures of the
tables in a system called the Metadata store, which is also a key module of the Hadoop stack. By accessing
this Metadata store, a SQL-on-Hadoop engine knows how to read the data from file. The metadata store
can be queried using an API called HCatalog. In a way, this metadata store is comparable to the catalog of
classic SQL database servers. The big difference is that many SQL-on-Hadoop engines can use and share
one and the same Metadata store, whereas all the classic SQL database servers use their own metadata
store (the catalog).

Implementing SQL-on-Hadoop Engines — Developers of SQL-on-Hadoop engines have to select an interface to
store and access data in HDFS files. There are several options: on top of HDFS, MapReduce, HBase, or
some other interface. When running on MapReduce, the SQL-on-Hadoop engine translates SQL
statements to MapReduce jobs; when running on HBase, it translates SQL to the typical HBase commands,
such as get record; and, when using HDFS, it uses the low-level, file-oriented APl of HDFS. Which one is
used does have an impact on the performance of the SQL-on-Hadoop engine. For example, HBase works
well for so-called point queries with which just one or a few records are selected, and MapReduce works
well if complex analytical functions are processed requiring the access of many records.
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6 Technological Challenges of a SQL-on-Hadoop Engine

If only structured data is stored and manipulated, if the set of columns in each table is static, and if the
SQL queries are straightforward, developing a SQL-on-Hadoop engine is not that difficult for a vendor.
Unfortunately, it’s not that simple. First of all, not all big data is structured and static, and secondly,
analytical queries can be far from straightforward. These are the main key reasons why development of a
SQL-on-Hadoop engine raises a number of technological challenges. These technological challenges can be
classified in two groups: Non-SQL-to-SQL transformational challenges and architectural challenges.
They’re described in the following two subsections.

6.1 Non-SQL-to-SQL Transformational Challenges

How is Data Stored? — When data is stored in HDFS there are no limitations on how data is stored. In fact,
this applies to most file systems—no structure is imposed on the storage format of data. The applications
themselves assign a format to the data. This format-free concept is one of the attractive aspects of
Hadoop.

For HDFS multiple predefined file formats exist, such as Avro, ORCFile, Parquet, RCFile, Text, and
SequenceFile. When these are used, many applications understand how to manipulate the data. Each of
these file formats is designed for specific form of usage. For example, Parquet is a column-oriented binary
file format intended to be highly efficient for large-scale queries, whereas the Text file format is ideal for
archiving data.

S0L-on-Hadoop and File Formats — When a SQL-on-Hadoop engine operates directly on HDFS, it determines
how data is organized in the files. It can use one of the aforementioned file formats or use a new one. A
CREATE TABLE statement usually contains an indication of the format to be used when storing the data in
HDFS. When INSERT statements are used, the SQL-on-Hadoop engine stores the data in that file using the
format belonging to that table. SQL-on-Hadoop engines, like all applications using HDFS, are free in
selecting a file format. Nevertheless, regardless of the format used, the data is presented to the
applications as tables consisting of records and columns—the file format used is hidden.

It’s a different story when data has been inserted in HDFS without the
use of a SQL-on-Hadoop engine, but through MapReduce or HBase, or
when applications write directly to HDFS. For example, home-made
applications using MapReduce may store the data with a hierarchical
structure or may store data in a non-structured way, and others may
have opted for storing the data as XML documents. If such files are retrieved by a SQL-on-Hadoop engine
directly (without the use of another application), it must understand the format, and more importantly, it
must be able to transform the storage format of the data to tables, columns, and records. Or in other
words, non-SQL concepts must be transformed to SQL concepts.

HDFS files may contain nested
data, variable data, schema-
less data, or self-describing
data.
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The rest of this section describes how the following non-SQL concepts, which can be found in HDFS files,
can be transformed to SQL concepts:

o Nested data

e Variable data

e Schema-less data

o Self-describing data

Note that in the explanations the SQL terms table, record, and column are used to describe concepts of
HDFS. The reason that this classic terminology is used is to improve readability for readers with no HDFS
background.

Nested Data — Data may be stored in HDFS with a hierarchical structure, using, for example, XML, JSON, or
BSON. The effect is that a column of a record does not contain one atomic value, such as a number, string
or date, but a set of values, or even an entire table. This explains the term nested table. In relational
terminology a nested table does not conform to the first normal form. Such a table can be depicted as
follows:

CUSTOMER ID

LAST NAME

FIRST NAME |

CUSTOMER ORDERS

75295 Sylvian David
203699 2008-01-16
306892 2008-07-21
477047 2008-12-09
103819 Scaggs Boz
70675 2008-10-19
530223 2008-12-01
132171 Rundgren Todd
210220 2008-04-21
485584 2008-10-14
718579 2008-11-23
741912 2008-12-24

Generally, there are three solutions for a SQL-to-Hadoop engine to process nested data. In the first
solution, the nested data is transformed into a complex value with some internal structure, for example,

as in the next table:

FIRST NAME ‘ CUSTOMER ORDERS

CUSTOMER ID LAST NAME
75295 Sylvian David 203699,2008-01-16},{306892,2008-07-21},
477047,2008-12-09}

{
{
103819 Scaggs Boz {70675,2008-10-19}, {530223,2008-12-01}
{
{

132171 Rundgren Todd 210220,2008-04-21},{485584,2008-10-14},
718579,2008-12-24}

This means that the SQL-on-Hadoop engine leaves it to the application that receives this data to
understand and unravel it. If the receiving application is written in Java that should not be a problem, but
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if it’s a reporting tool, there will be problems, because most of them don’t support the functionality to
process such complex values.

In the second solution, the SQL-to-Hadoop engine “flattens” the nested data somehow. For example, the
first record in the table above becomes three separate records after flattening:

CUSTOMER_ID‘ CUSTOMER_ORDER _ID ‘ORDER_TIMESTAMP LAST_NAME FIRST_NAME ‘

75295 203699 2008-01-16 Sylvian David
75295 306892 2008-07-21 Sylvian David
75295 477047 2008-12-09 Sylvian David

With the third solution is that the SQL language itself is extended with nesting. In other words, the SQL-to-
Hadoop engine understands and manipulates nested tables and can present them as nested tables to the
applications. It involves enriching the SQL language with concepts to process and flatten these hierarchical
structures. In such SQL-on-Hadoop engines these hierarchical structure are first-class citizens. Extended
SQL interfaces are sometimes referred to as SQL+ or extended SQL.

Note that if this option is selected, many reporting and analytical tools won’t be able to access the
hierarchical data, because they do not support extended SQL.

Variable Data — In SQL, all records in a table have the same set of columns and thus the same number of
values. Tools accessing SQL expect that when a set of records is retrieved each returned record has the
same set of columns. To summarize, SQL has been designed to work with static data.

HDFS files may contain variable data (sometimes referred to as sparse data). There are two forms of
variable data with which a SQL-to-Hadoop engine may have to deal. First, HDFS allows records with an
extra column to be inserted in an existing table, a column that hasn’t been defined when creating the
table. For example, HBase supports all forms of variable data. Here is an example of what such a table
(with five records) may look like:

CUSTOMER ID | CUSTOMER ORDER ID | ORDER TIMESTAMP

75295 203699 2008-01-16
75295 306892 2008-07-21
75295 477047 2008-12-09

CUSTOMER ID | CUSTOMER ORDER ID | ORDER TIMESTAMP  ORDER PROCESSED
463281 203643 2008-01-16 2008-01-20

CUSTOMER ID CUSTOMER ORDER ID ORDER TIMESTAMP ORDER CANCELLED

463246 285825 2008-01-19 2008-10-20

Here, the first three records have a value for each defined column. Then, a fourth record is inserted,
which has a new column called ORDER PROCESSED, and the fifth record has added an extra column as well
called ORDER_CANCELLED.

The second form of variable data is the repeating group, which most SQL implementations don’t support.
In a column that holds a repeating group each record has a set of values. Below, a table is shown in which
the column TELEPHONE_NUMBERS is a repeating group; each customer has a variable set of telephone number
values.
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CUSTOMER_ID ‘ CUSTOMER_NAME TELEPHONE_NUMBERS

463246 0'Keefe {5157818, 2362436}

463249 Zappa {1234567, 3262836, 4374777}
463350 Donahue {3854757}

Both forms of variable data are not straightforward to transform. In the case of a repeating group, what
should the result look like if all the records and all the columns are retrieved? One solution is to determine
the maximum number of values in the repeating group first. In this example that’s three. Then, the result
of the query includes three telephone number columns. For the record with the maximum number of
values, all these columns are filled with a value, and for the others the right-hand columns are filled with
NULL values. Result:

CUSTOMER_ID | CUSTOMER NAME TELEPHONE_1 TELEPHONE_2 | TELEPHONE_3 |
463246 0'Keefe 5157818 2362436 ?

463249 Zappa 1234567 3262836 4374777
463350 Donahue 3854757 ? ?

Another solution is to return the data “vertically” like this:

CUSTOMER _ID ‘ CUSTOMER_NAME TELEPHONE_NUMBER
463246 0'Keefe 5157818
463246 0'Keefe 2362436
463249 Zappa 1234567
463249 Zappa 3262836
463249 Zappa 4374777
463350 Donahue 3854757

A third solution is to return a three-part result. The first part consists of all the records with one telephone
number and where each record consists of three columns (CUSTOMER_ID, CUSTOMER_NAME, TELEPHONE_1). This is
followed by the second part that contains all the records with two telephone numbers and where each
record consists of four columns (CUSTOMER ID, CUSTOMER NAME, TELEPHONE 1, TELEPHONE_ 2). And this is followed
by the third part that contains all the records with three telephone numbers and five columns
(CUSTOMER ID, CUSTOMER NAME, TELEPHONE 1, TELEPHONE 2, TELEPHONE_3). This concept is called a multi-set result in
ODBC and JDBC.

What the best solution is, probably depends on the application needs. But whatever the result is, a SQL-
on-Hadoop engine must be able to process variable data.

Schema-less Data — With nested and variable data, data does have a schema. HDFS may also contain
schema-less data. With schema-less data, the schema of the data is not known to the data storage
technology. For example, a popular form of schema-less big data is textual data.

Processing schema-less data is highly unusual in a SQL environment. When data is written to a database
using SQL, a schema is always assigned to the data. This phenomenon is called schema-on-write. When
schema-less data is stored, a schema must be assigned to the data when it’s read. This is called schema-
on-read and is the complete opposite of schema-on-write.

Here is an example of a record coming from a large weblog that contains schema-less data in the column
WEBLOG:
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WEBLOG

30130 datestamp ip request 6/1/2012 11:10:19 AM 107.1.187.170 GET /x.php?u=http://studio-5.financialcontent.com/synacor?Page=QUOTE&Ticker=DDD
HTTP/1.1 6/1/2012 5:53:49 AM 107.1.2.180 GET /tv/3/player/vendor/Chef%20Tips/player/fiveminute/content/steak/asset/gnrc_15879500 HTTP/1.1
6/1/2012 8:55:54 AM 107.34.51.63 GET /tv/3/search/content/The%20Andy%20Griffith%20Show/s/The%20Andy%20Griffith%20Show HTTP/1.1 6/1/2012
3:12:43 PM 107.5.115.117 GET
/tv/3/search/content/Kathie%20Lee%20Gifford's%20epic%20'Today'%20gaffe/s/Kathie%20Lee%20Gifford's%20epic%20'Today'%20gaffe HTTP/1.1 6/1/2012
4:48:35 PM 108.225.132.245 GET /tv/3/search/content/Deadliest%20Catch/s/Deadliest%20Catch HTTP/1.1 6/1/2012 10:25:12 AM 108.246.20.125 GET
/x.php?u=http://studio-5.financialcontent.com/synacor?Page=QUOTE&Ticker=DJ:DJI HTTP/1.1 6/1/2012 1:58:14 AM 108.246.25.117 GET
/tv/3/player/vendor/Chef%20Tips/player/fiveminute/content/steak/asset/gnrc 15879500 HTTP/1.1

Schema-less data may be the hardest to transform to a more traditional relational form. Before the above
value can be processed, it must be organized in columns, because a SQL query result requires a
schema/structure. A SQL-on-Hadoop engine must offer features to assign a schema when the data is
retrieved.

Self-Describing Data — With self-describing data each value in a column of a table can have a different
structure. However, the structure (metadata) of each value is stored together with the data itself. In other
words, data and metadata are stored together. This means that the data storage system understands the
structure of the data. Here is an example of a table with three records in which the column called VALUE
contains self-describing data. JSON is used to describe the structure of each value.

ID VALUE
75295 { "employee" : {
"number" : "6",
"name" : "Manzarek",
"initials": "R",
"street ": "Haseltine Lane"}
}
103819 { "employee" : {
"number" : "7",
"name" : "Metheny",
"initials": "P",
"street" : "Brownstreet"}
}
132171 { "employee" : {
"number" : "15",
"name" : "Metheny",
"initials": "M"}
}

When each value in the column has the same structure, transforming them all to one and the same
relational structure is probably a matter of combining the logic used for transforming nested and variable
data. For example, transforming the above table returns the following result:

EMPLOYEE NUMBER ‘ EMPLOYEE NAME EMPLOYEE INITIALS EMPLOYEE STREET

75295 6 Manzarek R Haseltine Lane
103819 7 Metheny p Brownstreet
132171 15 Metheny M ?

When each value in a column has a different structure, transformation to SQL becomes more difficult. For
example, how should a classic SQL-on-Hadoop engine transform the next table to a flat table?
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ID VALUE
75295 { "employee" : {
"number": "6",
"name": { "lastname": "Manzarek",
"initials": "R" },
"address": { "street": "Haseltine Lane",
"houseno": "80",
"postcode": "1234KK",
"town": "Stratford" }
1
}
103819 { "employee" : {
"number": "7",
"name": { "lastname": "Metheny",
"initials": "P" },
"address": { "street": "Brownstreet",
"houseno": "80",
"province": "ZH",
"town": "Boston" }

1
}
132171 { "employee" : {
"number": "15",
"name": { "lastname": "Metheny",
"initials": "M",
"Code": II45II }

Summary — Transforming non-SQL data, such as nested data, variable data, schema-less data, and self-
describing data, to “flat” SQL data is a technological challenge for SQL-on-Hadoop engines.

6.2 Architectural Challenges

The second challenge facing SQL-on-Hadoop engines relates to the overall architecture of the engine. This
primarily deals with how SQL queries can be executed fast even if the amount of data is massive. This
section describes four requirements for the internal architecture of SQL-on-Hadoop engines:

e Concurrent queries/users

e Parallel execution of complex operations
e Running complex analytical functions

e Cost-based optimization

Managing Concurrent Queries — Many benchmarks are available with
which vendors can show how fast their SQL-on-Hadoop engine is.
Examples are TestDFSIO, TeraSort, NNBench, and MRBench.
Regrettably, most of the available benchmarks show the performance of a single query. Being able to
execute one query fast is very useful, but the real challenge is to concurrently run multiple queries fast,
especially if these queries have different characteristics. The architecture of a SQL-on-Hadoop engine
must be able to manage the processing of concurrent queries and the resources used by these queries.

Single-query benchmarks are
not very useful.
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Practically, what this means is that the product must be able to
support a mixed query workload. It must be possible to set parameters
that determine how the engine should divide its resources over
different queries and different types of queries. For example, queries
from different applications may require different processing priorities, long-running queries should get
less priority than simple queries being processed concurrently, and unplanned and resource-intensive
gueries may have to be cancelled or temporarily interrupted if they use too many resources. SQL-on-
Hadoop engines require smart and advanced workload managers.

SQL-on-Hadoop engines must
be able to support a mixed
query workload.

Parallel Execution of Complex Operations — To fully exploit the highly parallel hardware platforms on which
Hadoop runs, a SQL-on-Hadoop engine must be able to parallelize all (or most) of the query processing.
Retrieving all the data from the HDFS file system and then doing all the SQL execution on one node
(possibly in memory) is not an optimal use of the Hadoop platform.

Running Complex Analytical Functions — The most important instrument Hadoop offers to speed up queries is
parallelization. Simple SQL queries such as “For each month get the total revenues” are easy to parallelize.
It’s important that a SQL-on-Hadoop engine is also capable of executing complex analytical functions in
parallel. For example, functions such as a market basket analysis or a Gaussian discriminative analysis are
complex and may require the access of many records from many files and may include several complex
calculations. A SQL-on-Hadoop engine must be able to parallelize the processing of these complex
functions.

Cost-Based Optimization — Each SQL-on-Hadoop engine contains a query optimizer. This module is
responsible for coming up with the fastest and most efficient strategy to execute queries. It must translate
a SQL query to a processing strategy (sometimes called an access plan). Optimizers are usually categorized
as rule-based or cost-based optimizers. A rule-based optimizer only looks at the query itself and the tables
structures and uses certain rules to determine the best processing strategy.

Cost-based optimizers also check the query and the table structure, and in addition consult statistical
information on the data in the tables. Examples of statistical information are the size of a table in bytes or
number of records, the maximum and minimum values in each column, the distribution of values within a
column, and the partitioning schema of data. Cost-based optimizers are likely to come up with a more
efficient processing strategy although there is no 100% guarantee. For example, when an application asks
for all the rows from a table where the value of a column is greater than 100, the optimizer doesn’t even
need to run the query when it knows that the maximum value in that column is 90. A rule-based optimizer
wouldn’t know this, and would access all the data.

Especially in big data systems where massive amounts of data are queried, a cost-based optimizer can
improve query performance dramatically.

T Use Cases of SQL-on-Hadoop

The first popular use case of Hadoop was running complex forms of analytics, such as data mining and
predictive modeling, on big data in a somewhat batch-oriented and non-interactive style. In such an
environment, queries that take twenty minutes to twenty hours are no exceptions. Still, analysts would
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not be unhappy, because with other technologies these same queries may take several days. Hadoop fits
this workload perfectly.

Today, many more use cases of Hadoop can be identified, such as analyzing schema-less data in weblog
records, archiving data for compliancy reasons, studying DNA patterns, and geographical analysis of buyer
consumption. And this list keeps getting longer. With all the available SQL-on-Hadoop engines, users can
use almost any kind of tool to access and exploit the data stored in Hadoop. Undoubtedly, this will lead to
even more use cases of Hadoop.

This section describes some of the more popular use cases of SQL-on-Hadoop to show the versatility of
this technology. Note that more can be identified.

1.1 Interactive Reporting and Analysis

Interactive reporting and analytics is the classic use case of data warehouse environments. With
interactive reporting, users repeatedly access their data to see what’s happening with certain business
processes. They see their data organized as cubes, dimensions, and hierarchies. They can filter their data,
drill down to a more detailed level or, vice versa, do a roll-up, and they can apply aggregations and
statistical functions, such as sum, average, and standard deviation. It’s called interactive because the users
are continuously sending new queries to the database.

Because most SQL database servers can support an interactive
reporting workload, they have been used in almost all current data
warehouse systems. However, some SQL-on-Hadoop engines have
been designed to support interactive reporting and analysis as well.
They can take over that interactive workload.

Some SQL-on-Hadoop engines
have been designed to
support interactive reporting
and analysis.

This use case of SQL-on-Hadoop has two benefits:

e Imagine a Hadoop system containing a massive amount of data. It's probably too expensive to
duplicate all that data in the data warehouse environment. By using a SQL-on-Hadoop engine,
that data is still available for interactive reporting and analytics.

e Almost all the reporting tools can only process structured relational data, but not nested, variable,
schema-less, or self-describing data. With a SQL-on-Hadoop engine all those forms of data do
become available for interactive reporting and analytics as well. The only requirement is that the
engine is able to transform the data to neat tables and columns.

1.2 Self-Service Business Intelligence

This second use case is very much like the first one. Lately, so-called self-service Business Intelligence tools
have become popular in data warehouse environments. Examples are Tableau, Qlikview, Spotfire, and
CXAIR. Most of these self-service Bl tools use in-memory technology to speed up processing. They read
data from a data warehouse or data mart into memory of the client machine. The data is organized in
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memory using efficient compression and indexing technologies. Accessing this in-memory data is usually
very fast.

Because of the in-memory approach, the underlying data storage technology is accessed infrequently, in
fact, only when data is needed that hasn’t been accessed by the tool. In this use case, as with the previous
one, a SQL-on-Hadoop engine allows self-service Bl tools to access big data stored in HDFS even when the
it’s nested, variable, schema-less, or self-describing.

1.3 Batch Reporting

Batch reporting is the most classic use case of reporting in the IT industry. Usually, on predefined days and
times reports are created and the results are distributed to the business users. In the old days, these
reports would be printed on green computer paper and sent to the users using the internal mail service.
Nowadays, users receive them on their own machines and smartphones. The queries executed in batch
reporting environments usually consist of simple joins and no complex analytical functions. This use case
fits like a glove for SQL-on-Hadoop. Almost all these engines can support this type of workload.

14 Point Queries

A very popular type of query is the point query. With a point query an individual object is retrieved from a
list of objects. For example, one customer record is selected from all the customers, or one order or one
credit card payment is selected. Especially production systems execute many point queries. But also
websites need to pick individual objects or small sets of objects from a database. In all situations, point
queries are very simple and must be executed very fast, especially when customers are waiting.

Being a sequential file system, picking just one object using the HDFS interface requires a full scan of the

file. HBase is much better suited for point queries. So, SQL-on-Hadoop engines that support HBase can
deliver fast responses on these point queries, even if the number of records is enormous.

1.5 Operational Processing

Operational processing is a use case where zero-latency data is presented to users. It usually involves a
data source that is continuously updated with new data and concurrently queried. Seconds and even
micro-seconds count in operational processing. It could be the difference between success and failure.
Operational reporting is the basis for popular trends such as operational intelligence or real-time
analytics.

Most HDFS implementations can handle a massive data load workload. By placing a SQL-on-Hadoop

engine on it, users are able to query the new data entered milliseconds ago. So, SQL-on-Hadoop opens the
door to operational processing.
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1.6 Investigative Analytics

With most forms of reporting and analytics, users know what they’re looking for. With investigative
analytics (or data discovery) they don’t always know exactly what they are searching for, although they
probably have a feeling or an inkling. This is the world of the data scientist.

But what is a data scientist and what does he do? For example, in an oil company, the ones responsible for
analyzing soil test results to locate new oil fields or for analyzing new techniques to find new oil fields
faster, can be classified as data scientists. Another clear example of a data scientist is an actuary working
for an insurance company. Actuaries deploy mathematics, statistics, and financial theory to analyze the
financial consequences of risk. Professors looking for cures for specific diseases by doing DNA research
can also be classified as data scientists.

Examples of some of their queries are:

e What is a possible behavioral pattern of credit card usage that signifies a fraudulent action?
e What are other forms of data that can help us locate deeply buried oil fields more easily?
e How high is the financial risk if a person of 21 years with no job is given a mortgage?

The characteristics of this workload are: very complex queries, access to big data (structured and not
structured), and an irregular workload. Most Hadoop implementations feel comfortable with this
workload. Adding a SQL-on-Hadoop engine on top makes it easier for the data scientists to analyze the
data freely.

1.1 Data Stream Processing

The data stream processing use case is almost the opposite of the batch reporting use case. With data
stream processing, incoming data is continuously monitored and immediate actions are taken when some
event occurs. For example, a server log is monitored and action is taken immediately when a component
fails. It could also be the monitoring of a Weblog where real-time relevant data is pushed to an analytical
dashboard.

Most SQL-on-Hadoop engines, in fact most SQL products, can’t handle data stream processing. However,
HDFS itself is more than capable to support this workload.

1.8 Storage of Cold Data Warehouse Data

Data stored in a data warehouse can be classified as cold, warm, or hot. Hot data is used almost every
day, and cold data occasionally. Keeping cold data in a data warehouse slows down the majority of the
queries. Also, it’s expensive, because all the data is stored within an expensive data storage system. If the
data warehouse database is a SQL database, it may be useful to store cold data outside that database in
Hadoop HDFS. This storage form is less expensive and the data remains accessible. The resulting
architecture is displayed in Figure 6.
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This solution saves storage costs, it speeds up queries on the hot and warm data in the warehouse (less
data), and it can handle larger data volumes by moving cold data to Hadoop.

To pump data from the SQL-part of the data warehouse to the Hadoop-part, a SQL-on-Hadoop engine is
very useful. It makes copying of the data straightforward, because it comes down to simply copying the
contents of one SQL table to another. And, with a SQL-on-Hadoop engine on the Hadoop files, reports can
still get to the cold data easily. So, the cold data remains online available.

1.9 Storage of External Data

Analytics on internal data, such as data from ERP systems, call center log files, weblog files containing
Website interactions, voice transcripts from customer calls, and personal spreadsheets can definitely lead
to useful business insights. However, by enriching internal data with external data, analytical capabilities
and the chance on finding valuable business insights increase dramatically. Nowadays, there is a lot of
external data available of which social media data is the most well-known. By integrating internal
customer data with, for example, Facebook data, a more detailed picture can be developed of what a
customer thinks about the products and the company.

But it’s not only social media data. Thousands and thousands of open data sources have become available
for the public. There are open data sources that contain weather data, demographic data, energy
consumption data, hospital performance data, public transport data, and the list goes on and on. Almost
all these open data sources are available in the cloud through some API.

Because of the sheer size, storing external data in a classic SQL database may be too expensive. Storing it
in HDFS makes a lot of sense, especially when the data is not highly structured.

By making external data stored in HDFS available via a SQL-on-Hadoop engine means that almost every
user using his favorite reporting or analytical tool can exploit it. The SQL-on-Hadoop engine opens up the
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external data to a large audience and thus increases its potential business value. A requirement for
supporting this use case is evidently that the SQL-on-Hadoop engine knows how to transform all the data
that has no relational structure.

1.10 Fast Staging Area

The workload of a staging area in a data warehouse architecture is usually straightforward: in (semi-)real-
time new data entered in production systems is copied to a staging area and from there the data is copied
onwards to an operational data store or data warehouse. Usually, this second step is done in batch.
Eventually, after data has arrived in the data warehouse it can be deleted from the staging area; again,
this a batch process. Ordinarily, no reports are executed on a staging area.

The workload of a staging area fits perfectly with Hadoop. HDFS is able to ingest large amounts of data in
real-time fast, and, for example, MapReduce is great at extracting data using a batch-oriented approach.

Data extraction from a staging area is usually done using ETL tools. However, not all ETL tools support
native MapReduce or one of the other Hadoop interfaces. Because all of them support SQL, they can use a
SQL-on-Hadoop engine to extract the data periodically. If data must be heavily transformed before it’s
copied to the data warehouse, all the required processing can be executed by the SQL-on-Hadoop engine
efficiently in parallel.

1.11 ETL (Pre)Processing Platform

The sheer data volume in a particular data warehouse may be too much for a SQL database. It may
become too costly and queries may be too slow. In this situation, aggregating the data somewhat before
it’s stored in the data warehouse database may make sense; see Figure 7. This shrinks the size of the data
warehouse database and speeds up query processing. In fact, besides doing data aggregation, other forms
of processing may be applied as well.

However, if this solution is selected, another database must be available to hold all the detailed data
(which is not the staging area) and some module must become responsible for aggregating and processing
the data. Hadoop can be selected as the data store for all the detailed data and a SQL-on-Hadoop engine
for access. In this architecture Hadoop contains the large data volumes—this is where data is pumped into
first. Then, SQL-on-Hadoop is used to insert all the data efficiently and is used when all the data is
aggregated and transformed before it’s copied to the data warehouse database. In other words, the SQL-
on-Hadoop engine is doing all the (pre)processing of data before it becomes available for reporting and
analysis—SQL-on-Hadoop acts as an easy-to-use ETL engine.
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Figure 7 Hadoop is used
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1.12 New Use Cases and Non-Relational Data

Section 6 describes the non-SQL forms of data found in big data systems. For most of the use cases
described in this section, it must be possible to support nested data, variable data, schema-less data, and
self-describing data. In other words, it must be possible to do operational processing on structured data,
as well as nested, variable, schema-less, and self-describing data; likewise, it must be possible to do
interactive reporting on all forms of data.

8 Big Data: From Single Use Case to Multi Use Case

The Single Use Case of Big Data — Many organizations have implemented big data systems for just one
particular use case. For example, a website owner runs a big data system with Hadoop with the single
intention to analyze weblogs and find particular usage paths; an airline may use a big data system to store
Twitter messages for monitoring customer comments live; and, a telephone company may deploy Hadoop
purely for archiving call detail records.

But organizations are slowly starting to pass this single use case stage. They want to do more with their
big data investments. They have discovered that big data can be used for other purposes as well, thus
improving the ROI of their big data investment. Especially due to the SQL-on-Hadoop technology, so many
more use cases exist, as shown in Section 7. They are evolving from a single-use case to multi-use cases.

The First Solution: Big Data Silos — Most SQL-on-Hadoop engines and data storage platforms have been
designed for a subset of the use cases described in the previous section (see also Section 5, Not All SQL
Engines Are Created Equal). For example, the stack consisting of Hive + MapReduce version 1 (MRv1) +
HDFS was designed for non-interactive forms of analytics on structured and unstructured data. Now, that
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Hive runs on MapReduce v2 (YARN) and will eventually use Tez as an execution engine instead of
MapReduce, it will become more suitable for interactive reporting. However, its strength is still not
handling complex forms of analytics on schema-less data or running data stream processing using for
example Apache Storm. In other words, the current SQL-on-Hadoop engines to manipulate data in HDFS
have been optimized for a few use cases.

So, whether a specific solution is right for a specific use case depends on many factors. The differences
between SQL-on-Hadoop engines are bigger than one may think, some are optimized for batch analytics
and investigative analytics whereas others are optimized for interactive reporting. In addition, the
underlying file system influences for which use case the combination works well. For example, if a SQL-on-
Hadoop engine is used, which has been designed for interactive reporting, but the file system underneath
has been designed to support small and fast file access in-memory, then using the combination of the two
is far from perfect. The file format has an impact as well. HDFS supports file formats in which data is
stored in a more record-oriented format, and there are those in which data is stored in columnar fashion.
To support a massive insert workload, the former is more suitable, while the second helps to speed up
analytical queries.

An analogy is probably cars and tires. It doesn’t make sense to place tires without grooves (slicks) on a
powerful SUV. Slicks are optimized to drive fast on dry and fast tracks, while SUVs are designed to drive in
rough countries. It would be far from a successful combination.

The consequence is that the stack of layers selected by many organizations was composed for a particular
use case. The moment they have a completely different use case, suddenly their existing solution is not
optimal anymore. It usually forces them to develop a second solution consisting of some other
technologies. In the long run, this results in many data storage platforms: each one designed and
optimized to support a limited number of use cases. In other words, this approach leads to big data silos;
see Figure 8. Besides having to develop and manage all these silos, many replication solutions are needed
to copy data from one database to another to keep them in synch.
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Figure 8 Big data silos lead to data duplication, high data latency, complex data replication solutions, and data quality

problems.
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The disadvantages of having all these big data silos are clear: high costs because of data duplication, high
data latency, complex data replication solutions, and data quality problems.

The Integration Labyrinth — Big data silos, where each silo is built on one big data source, can be regarded as
temporary solutions. History has shown that eventually the users of these silos want to combine data
from multiple data sources. When this happens, applications have to be extended so that they access
multiple data sources leading to a dedicated integration solution for each one of them. The result is an
integration labyrinth; see Figure 9. For an organization to guarantee that all these integration solutions
are correct, efficient, and lead to consistent results, is almost impossible.
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Figure 9 Big data silos lead to an integration labyrinth.
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The Multi Use Case Solution — Big data silos, where one data source supports one use case, is not what
organizations want, nor is any organization interested in an integration labyrinth. Big data systems must
support multiple use cases; there should be (almost) no need to duplicate data.

9 One Platform to Rule Them All

In the famed book entitled The Lord of the Rings written by J.R.R. Tolkien, there was “one ring to rule
them all”. The word “all” here refers to all the other magic rings with power. The owner of that one ring
controlled all the rings of power and would have the power to rule the world and would be invincible.

For building IT systems rings are not very helpful, but what is useful is one platform to rule them all. And
here “all” refers to all the use cases.
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Considering all the new requirements and use cases described in the
previous sections, what is needed is one data management platform
that supports all the current and future use cases, thus minimizing the
need to duplicate all that big data and avoiding the development of big
data silos and an integration labyrinth; see Figure 10.
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Figure 10 70 avoid an analytical labyrinth, one data management platform is needed that supports all the different forms of
reporting, analytics, and operational data processing.
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The advantages of this one-platform architecture are obvious:

e No extra data storage costs due to duplication

e No risk of data inconsistency due to duplication failures

e No license fee costs for data duplication software

e No data latency problems because of duplication time

e More flexibility because no need to replicate data structure changes

Sounds good, but most platforms have been designed and optimized for a limited number of use cases. To
return to the analogy with cars again, this is not much different from the car industry. Some cars, such as
the Masarati Ghibli, have been designed to drive fast, while others such as the Dodge Grand Caravan have
been designed to transport families comfortably, and a Freightliner truck has been manufactured to carry
big and heavy loads. There are not that many cars that support most or all the use cases, and the same
applies for data management platforms.

A data management platform must support a file system that is functionality rich enough to support a
wide range of use cases, and the same should apply for the SQL-on-Hadoop engine on top. In an ideal
situation it must be able to support analytics, batch processing, point queries, interactive reporting,
operational processing, investigative analytics, and data stream processing. This minimizes the need to
develop numerous big data silos.
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The next section discusses why the MapR platform is such a platform, and Section 11 describes the SQL-
on-Hadoop engine Apache Drill, which runs on MapR or any other Hadoop distribution and supports a
wide range of use cases.

10 The MapR M1 Platform

Introduction to MapR — One platform that has been designed to support a wide range of use cases is the
MapR Distribution for Hadoop: M7 Enterprise Database Edition. The MapR Distribution ships with over
twenty Apache Hadoop projects. An application developed for any Apache Hadoop distribution can be
ported to (and from) MapR without any changes. This is similar to other Hadoop systems such as Amazon
Elastic MapReduce (EMR) which uses S3 for storage instead of HDFS; see also Section 4. Where the MapR
Distribution for Hadoop distinguishes itself from other implementations is that it has been developed to
be faster, more reliable, and more easily manageable than other distributions.

A key advantage of MapR M7 is the manageability of the platform. First of all, there is no need for
database administration. There are no extra servers to administer that handle database operations. All
the database operations are processed by the core MapR system. Plus, all high availability and disaster
recovery (HA/DR) features apply to both Hadoop files and database tables, therefore, a separate HA/DR
strategy is not required to keep database operations online. Secondly, MapR M7 offers zero downtime.
The HA/DR features in MapR are built-in for production use. Other distributions require integration with
third-party products for true HA/DR. Snapshots are easily taken and managed via the browser-based
interface. When a node fails, instant recovery ensures a very short recovery time for database operations.

The MT Integrated Database — MapR M7 ships both Apache HBase as well as an integrated, optimized
database that is compatible with Apache HBase. One advantage it offers is that it leverages the full read
and write capabilities of the MapR Data Platform. Although it’s compatible with Apache HBase, its
implementation is quite different. Because Apache HBase runs on Apache HDFS, the limitations of HDFS
are imposed on HBase. For example, as indicated, Apache HDFS is an append-only file system. This means
that when HBase needs to execute inserts, deletes, or updates, it must simulate these operations by
creating new files. This adds tremendous read and write overhead, and has a serious impact on the
performance and manageability of HBase applications.

What's unique in MapR is that it reads and writes directly to disk, it doesn’t use HDFS via its own file
system. So, the mentioned disadvantages don’t apply to the MapR Distribution. Applications can do
inserts, updates and deletes, and these are all executed very much like comparable operations in classic
SQL database servers: existing records are replaced by new ones, or are completely deleted from the file.
This involves a lot less work and, most importantly, it speeds up insert, update, and delete operations.
Also, it requires no other software layers; see Figure 11. This is different from the Apache HBase
architecture which relies on HDFS, and both need a Java Virtual Machine. This means the M7 database can
run much faster with fewer resources. As a result, running a SQL-on-Hadoop engine on this database is
very fast.
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A benefit of MapR M7 is its continuous low latency, which indicates
how fast data can be transported from disk to the CPU to make it
ready to be shipped to the application. Especially in an HDFS
environment, where all data requests are executed by scanning
complete files, it's important that read latency is as low as possible.
Benchmarks with the well-known YCSB benchmark (Yahoo! Cloud Serving Benchmark) indicate that read
latency in MapR is much lower than that of other distributions”. In addition, the read latency of MapR is
much more consistent, because its optimized architecture eliminates the need for compaction and
defragmentation, so there are no periods of intensive housekeeping to slow down the entire system. This
low latency is especially relevant when running operational applications on Hadoop.

MapR M7 offers a continuous
low latency which is
important for operational
processing.
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Apache HBase — As a complete distribution for Hadoop, MapR M7 also includes Apache HBase. Applications
built on Apache HBase can be run on the M7 integrated database, and vice versa. And if desired,
applications can be run on both Apache HBase and the M7 database simultaneously on the same cluster.

“One Platform to Support Them All” — MapR has been designed from scratch to support a wide range of use
cases along with supporting industry standard interfaces, such as NFS, HDFS, REST, LDAP, and ODBC.
MapR supports most of the open source SQL-on-Hadoop engines (see also Figure 5) and a wide range of
other applications. Note that MapR provides tight integration with industry leading non-open-source SQL
technologies such as HP Vertica as well. It can operate as the sole data management platform for most
forms of reporting and analytics and minimizes the need to duplicate data and replicate integration
solutions; see Figure 10.

11 The Apache Drill SQL-on-Hadoop Engine

Hadoop is becoming a general-purpose platform for all big data applications—both analytic and
operational. MapR is enabling such a platform with its unique enterprise capabilities. Being able to
support multiple SQL-on-Hadoop options is a key element of the MapR platform.

2 MapR Technologies, NoSQL Performance Report, MapR M7 — Performance Comparison, 2013, see
http://www.mapr.com/sites/default/files/mapr_m7_performance-benchmarkl.pdf
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There are several SQL-on-Hadoop engines from various vendors each offering their own strengths, but to
support a general purpose platform, you need a general purpose query layer which accounts for the
flexible data model, nested data structures commonly found in big data applications. Apache Drill is trying
to solve this problem and MapR is spearheading its development in the open source community.

Introduction to Apache Drill — The SQL-on-Hadoop engine called Apache
Drill is an Apache community-driven open source project to which
MapR is a key contributor along with others in the community. It
operates on top of any standard implementation of HDFS and HBase,
including for example the MapR Data Platform and the MapR M7 database, but also Apache HDFS and
Amazon S3; see Figure 12.

Apache Drill is a real
community-driven open
source project.

Figure 12 Dril is a SAL-on-Hadoop engine that supports access to HOFS
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The characteristics of Apache Drill are classified here in four categories: use cases, architecture,
functionality, and non-SQL-to-SQL transformations.

Use Cases of Apache Drill:

e The Drill SQL query engine has been designed for a wide range of SQL use cases on big data,
including interactive query environments (OLAP, self-service BI, data visualization), batch-oriented
guery environment (data mining), point-queries (retrieving individual objects), and investigative
analytics (data science).

e Apache Drill has been designed from the start to support use cases that require processing of
nested data, variable data, schema-less data, and self-describing data (see Section 6) without the
need to define schemas around them.

Architecture of Apache Drill:

e Zero-latency queries: Due to its columnar format to store and process data and that it doesn’t
require centralized schemas to be pre-built, Apache Drill offers low-latency queries as soon as
data arrives. Processing of the queries starts immediately by Drill making it suitable for interactive
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processing. This is different from SQlL-on-Hadoop engines that run on platforms such as
MapReduce v1 (and MapReduce v2) where the processing is scheduled and therefore take longer.

e Internal architecture: Drill doesn’t use MapReduce, it comes with its own processing architecture.
The architecture is based on a set of hierarchically-organized modules called drillbits. Drillbits are
responsible for executing SQL statements. A drillbit is installed

on each node that holds data. A drillbit module is capable of The architecture of Apache
executing SQL queries on the data that it manages. If data is Drill is based distributes query
stored across many nodes, all relevant drillbits are involved in processing over as many
the processing of the query thus parallelizing its execution. nodes as possible.

There is no master-slave architecture in Drill. When
applications access Drill, they are “connected” to different drillbits, to avoid one drillbit module
becoming responsible for the management of all the queries. Such a drillbit would become a
bottleneck when many queries are executed by many applications. Query processing is distributed
over as many drillbits as possible, always ensuring data locality.

e Extensible architecture: Drill has been designed to be extensible. New data sources, new file
formats, new operators, and also new query languages can be added easily. For instances, users
can easily create new user-defined functions or build custom storage plugins for traditional data
sources beyond Hadoop.

e Availability: Drill follows an optimistic query execution model. If a query fails when it tries to
access data that’s not available (for whatever technical reason), depending on internal settings,
Drill will re-run the query automatically. The failing and re-running of queries is transparent to the
users. To them it feels as if the query has executed without any hiccups.

e Data storage platform independent: Drill is not dependent on
a specific data storage platform. Drill is a query engine capable
of executing SQL statements on various data storage
platforms, including Apache HDFS, MapR FS, Apache HBase,
and the MapR M7 database. In fact, when existing data is
copied from HDFS to HBase using SQL statements, an application using Drill can be migrated
without any changes to the code.

Drill is a query engine capable
of executing SQL statements
on various data storage
platforms.

SQL Functionality of Apache Drill;

e ANSI SQL dialect: The SQL dialect supported by Drill is a classic dialect that includes all the
standard features such as inner joins, left and right outer joins, aggregations (group-by), and
statistical functions. Not implemented yet are windowing functions.

e User-defined Functions: Drill supports user-defined functions. Such functions can be used for
analytical operations, but also for transforming schema-less data in schema-rich data. This makes
schema-less data available for more classic reporting and analytical tools. The processing of UDFs
can be distributed over many nodes.
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Metadata store: Although Drill doesn’t require a metadata store to function, in instances where
there are already pre-defined schemas, Drill uses the same metadata store as other SQL-on-
Hadoop engines, such as Hive and Impala. So, table definitions entered by, for example, Hive can
be read by Drill, and vice versa. This metadata store is accessible through the HCatalog interface.

Non-SQL-to-SQL Transformations by Apache Drill:

Nested data: Drill processes nested data in its native format and offers specialized SQL extensions
to work with nested data.

Variable data: Many HBase files contain variable data. It’s one of the strengths of HBase. Drill
transforms all the variable data to classic SQL data types so that it any reporting or analytical tool
can query the data.

Schema-less data: As indicated, with user-defined functions schema-on-read on schema-less data
can be implemented. Even when HDFS files with schema-less data have been created outside Drill,
they can still be processed.

Self-describing data: Maybe this is the most distinguishing
factor of Drill. With Drill, SQL queries can be executed on self-
describing data. Usually, when a query is executed on a table,
the table schema is retrieved from the metadata store to
determine how the data should be retrieved. Because there is
no table schema for self-describing data and creating a process
around building schemas for such data would be complex and
difficult to maintain, the Drill optimizer just starts to read the
data, and with each retrieved record a better understanding of the structure unfolds. It’s possible
that after so many records, Drill restarts the query because it understands the schema of the data
better. This feature makes it possible to transform schema-less data to SQL structures and makes
that data available for any type of reporting tool.

One of the most
distinguishing factors of Drill
is that it can execute SQL
queries on self-describing
data without having to rely on
predefined, centralized
schema.

12 Closing Remarks

Standards and Independency — Although the Apache Software Foundation is not a standardization committee,
the Hadoop stack is slowly turning out to become an integrated set of de-facto standards. For each
module, such as HDFS, HBase, and MapReduce, an interface has been defined; see Section 4. These
interfaces can be implemented and optimized by vendors, as has been done by, for example, MapR
Technologies, Amazon, and GridGain.

Standardization of interfaces has several benefits. First of all, organizations can assemble their own
Hadoop stack based on their requirements with respect to, for example, performance, scalability, and use
cases. The only requirement is that the vendors implement these interfaces correctly and fully. Secondly,
it makes customers independent of a specific module—if a selected module doesn’t meet all the
requirements, it can be replaced by another one, and thus insuring the rest of the investment.
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One Platform — Because the number of use cases for which organizations want to deploy Hadoop is
growing, it’s important that data management platforms can easily support all these different use cases.
This is important if organizations want to avoid big data silos (leading to duplication of big data, expensive
replication mechanisms and so on; see Section 8) and if they want to avoid an analytical labyrinth. Due to
its unique internal architecture the MapR Distribution is capable of supporting most of them while
retaining support for all the Hadoop interfaces. The effect is that there is less need to deploy different
distributions for different use cases.

Comparison of Several SQL-on-Hadoop Engines — The previous section describes the Apache Drill SQL-on-
Hadoop engine in some detail. This section contains some comparison material of a number of SQL-on-
Hadoop engines.

Table 1 contains a high-level overview of several open sources SQL-on-Hadoop engines next to a classic
SQL database server. Apache Drill is included, plus three open source SQL-on-Hadoop engines, Cloudera
Impala, Apache Hive, and Shark. For completeness sake a column is added that indicates how a typical SQL
database server scores. All of these engines are supported on the MapR Distribution for Hadoop.

The products are compared on five criteria: Completeness of their SQL dialect, the complexity of the SQL
queries they can process well, the amount of data they can handle, the types of processing they support,
and the types of data they can process. The more blue boxes that are drawn, the more complete the
support is for a criteria.

Apache Drill Cloudera Apache Hive Shark Classic SQL
Impala

ANSI SQL complete
ANSI SQL medium
Minimum SQL
Complex queries
Medium queries E E E E
Simple queries
Big data
Large data E
Small data
Operational processing
Interactive processing E
Batch processing i
Schema-less data
Non-relational data
Structured data i i i

Table 1 A4 high-level comparison of several SQL-on-Hadoop engines plus a classic SOL database server.

What can be derived from Table 1 is that there doesn’t exist an SQL-
on-Hadoop engine that is ideal for every possible use case. Some are
perfect for interactive analytics while others work best for batch-
oriented analytics. In addition, some are good at processing all the
non-structured data, while others are optimized to work with structured relational data.

No SQL-on-Hadoop engine is
ideal for every possible use
case.

With respect to Apache Drill, its key strength is how it has been developed to work with all forms of data,
including nested data, variable data, schema-less data, and self-describing data. This is especially
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important for big data environments where IT or DBA’s do not want to create or continuously maintain a
centralized schema to enable self-service data exploration.

Maturity of Solutions — SQL-on-Hadoop engines differ in their maturity. This is especially relevant with
respect to their query optimizers. Efficient query optimizers that are able to come up with the perfect
processing strategy for every query are not born in development labs. They need many “hours in the
saddle.” It’s when an optimizer is used over and over again in all kinds of situations, will the developers
know how to improve and optimize it. This process make take a few years. Some of the SQL-on-Hadoop
engines are still young and still have to proof themselves in large-scale, complex, and multi-user
environments. It's important that organizations are aware of this and that they keep an alternative route
open. Don’t tie yourself into one solution that may cause problems later on.
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