

Discovering Business Insights in
Big Data Using SQL-MapReduce®

A Technical Whitepaper

Rick F. van der Lans
Independent Business Intelligence Analyst
R20/Consultancy

July 2013

Sponsored by

Copyright © 2013 R20/Consultancy. All rights reserved. Teradata, the Teradata logo, Aster,
SQL-MapReduce, Applications-Within, SQL-H are trademarks of registered trademarks of
Teradata Corporation and/or its affiliates in the U.S. and worldwide. Trademarks of companies
referenced in this document are the sole property of their respective owners.

Copyright © 2013 R20/Consultancy, all rights reserved.

Table of Contents

1 Summary 1

2 Discovery and the Data Scientist 3

3 The Discovery Process 5

4 Requirements for a Discovery Platform 7

5
5.1
5.2
5.3
5.4
5.5
5.6

Technologies for Implementing a Discovery Platform
The World of Big Data, NoSQL, and Schemas
Using SQL for Discovery
Functions in SQL
Parallelization of SQL Queries and SQL Functions
Hadoop and MapReduce in a Nutshell
The Marriage of SQL and MapReduce: SQL-MapReduce

9
10
13
17
19
24
27

6
6.1
6.2
6.3
6.4
6.5

Implementing a Discovery Platform
Solution 1: Classic SQL System
Solution 2: Advanced Reporting and Analytical Platform
Solution 3: SQL-MapReduce System
Solution 4: Hadoop with MapReduce
Solution 5: Hadoop with a SQL Interface

30
31
31
32
33
34

7 Comparison of Five Solutions for Implementing a Discovery Platform 35

8 Technical Advantages of SQL-MapReduce 37

 About the Author Rick F. van der Lans 39

 About Teradata and the Teradata Aster Discovery Platform 39

 Appendix A – The Built-in Functions of Teradata Aster Database 41

Discovering Business Insights in Big Data Using SQL-MapReduce 1

Copyright © 2013 R20/Consultancy, all rights reserved.

1 Summary

This whitepaper describes the advantages of merging the openness and productivity of SQL
with the scalability of MapReduce to create a discovery platform that supports today’s complex
and data-intensive analytical workload generated by data scientists. It focuses on the SQL-
MapReduce® implementation offered by Teradata through the Teradata Aster Discovery
Platform which includes the Aster Database and Aster Discovery Portfolio. The whitepaper also
discusses some of the alternative technologies available for developing a discovery platform,
such as Hadoop, MapReduce, NoSQL, schema-on-read, and SQL-fication.

Business intelligence users are traditionally classified based on the tools they use: users of
reporting tools and users of analytical tools. But there is a
third group of users, one that uses anything they can find to
discover new insights that can lead to business benefits.
They can benefit from reporting and analytical tools, but they
need more, they need discovery capabilities. Discovery is
about searching and analyzing data to find new business insights that can lead to business
opportunities.

Nowadays, analysts responsible for discovery are called data scientists. Data scientists
commonly use all the data and all the tools they can lay their hands on. They use analytics and
reporting to study data, but they won’t stop there. In other words, discovery is not a fancy new
term for analytics. Analytics is just one of the many technologies used by a data scientist to
discover new insights.

The discovery process commonly followed by data scientists consists of four steps: data
acquisition, data preparation, data analysis, and data interpretation. To support data scientists
in this discovery process, a reporting tool or analytical tool is not sufficient, they need a feature-
rich, fast, and flexible discovery platform. Such a platform should minimally support the
following features:

• Data scalability
• Heterogeneous data access
• Complex value analysis
• Data preparation techniques
• Multiple analysis techniques
• Multiple analysis tools
• Interactive analysis
• High-speed analysis
• High-level development language

Data scientists can select from different solutions for implementing a discovery platform:

1. Classic SQL system
2. Advanced Reporting Platform
3. SQL-MapReduce System
4. Hadoop with MapReduce
5. Hadoop with SQL interface

Discovery is about searching
and analyzing data to find

new business insights.

Discovering Business Insights in Big Data Using SQL-MapReduce 2

Copyright © 2013 R20/Consultancy, all rights reserved.

This whitepaper describes all five solutions in detail and focuses on the third one, the SQL-
MapReduce® solution. SQL-MapReduce is a framework based on a combination of SQL, which
is the most popular database language, and a programming model created by Google called
MapReduce. The goal of MapReduce is to distribute as much processing over as many
processors as possible. This whitepaper describes the SQL-MapReduce implementation
offered by the Teradata Aster Database (formerly called Aster Data nCluster). Aster Database
is part of the Teradata Aster Discovery Platform which also includes the Teradata Aster
Discovery Portfolio.

On the outside, the Teradata Aster Database looks like any other SQL database server. It
supports standard SQL and all the common APIs, such as ODBC and JDBC, so that it can be
accessed by all the popular analytical and reporting tools. What’s inside makes Aster Database
special. The product has been designed specifically for discovery and exploration of big data
with the intention to uncover business insights. Its unique Applications-Within™ architecture
runs analytic application logic inside the database, leveraging its massively-parallel
architecture and SQL-MapReduce to fully parallelize the processing of complex analytical
queries.

Besides being a powerful platform for data scientists, the support for standard SQL makes Aster
Database also suitable for more traditional query workloads such as reporting and analytics,
thus making it a platform for business analysts as well.

To summarize, extending a SQL database server with
MapReduce creates a discovery platform that combines
the expressive query power, openness, and productivity
of SQL with the parallelizability and scalability of
MapReduce. The combination has the potential to
improve the performance of complex analytical queries
running on large to extremely large datasets. Teradata Aster Database is a mature and robust
implementation of SQL-MapReduce and has proven itself as a discovery platform.

Note: This whitepaper is a rewrite of an older whitepaper entitled Using SQL-MapReduce for
Advanced Analytical Queries1 and was published in September 2011. Since then, much has
changed: the Hadoop stack has grown with several new modules, new SQL interfaces for HDFS
have been released, new versions of Aster Database have become available, and the interest
for big data has grown drastically. Therefore, it was decided to drastically rewrite this
whitepaper. Some pieces of text have been reused, but major sections are new or have been
completely revised.

1 R.F. van der Lans, Using SQL-MapReduce for Advanced Analytical Queries, September 2011.

Teradata’s Aster Database is a
mature and robust

implementation of SQL-
MapReduce and has proven itself

as a discovery platform.

Discovering Business Insights in Big Data Using SQL-MapReduce 3

Copyright © 2013 R20/Consultancy, all rights reserved.

2 Discovery and the Data Scientist

Business Intelligence and Discovery – Boris Evelson of Forrester Research2 defines business
intelligence as follows:

Business intelligence is a set of methodologies, processes, architectures, and
technologies that transform raw data into meaningful and useful information used to
enable more effective strategic, tactical, and operational insights and decision-
making.

From this definition can be derived that business intelligence is not a tool, not a technology, nor
some design technique, but it’s everything needed to transform and present the right data in a
form that leads to insights and improves the decision-making processes of an enterprise.

The tools used by decision makers to study and analyze data, can be classified in two main
categories: reporting tools and analytical tools. In principle, reporting tools show what has
happened. Although the shown data may have been transformed, processed, and aggregated,
still, the data shows the past and current situation. Typical examples of questions answered
with reporting tools are “Show the total revenue per sales region for the last two weeks” and
“Present a 360˚ report of a particular customer.” Dash boards are also examples of reports;
OLAP tools with which users can look at data from every angle and at every level of detail,
belong to this category as well, as do batch reports.

Analytical tools, on the other hand, are used to find out
what may or can happen. They use techniques such as
predictive modeling, simulation, and forecasting. The
result of analytics is usually not (aggregated) data but a
set of rules. Examples of such rules are “When a
customer buys cola and chips, there is a 75% chance he buys dipping sauce as well” and “The
most efficient route to deliver goods to a particular set of shops is the following.”

BI users can be classified based on the tools they use: reporting users and analytics users,
where the former is usually the bigger group. But there is a third group of users, one that uses
anything they can find to discover new insights which can lead to business benefits. They can
benefit from reporting and analytical tools, but they need more, they need discovery
capabilities.

Discovery is about searching and analyzing data to get some new business insights that can
lead to business opportunities. Their questions are not that straightforward so that they can be
answered by starting up a particular report or by firing up a pre-defined analysis. Examples of
their questions are:

• What is a possible behavioral pattern of credit card usage that signifies a fraudulent
action?

• What are other forms of data that can help us locate deeply buried oil fields more easily?

2 B. Evelson, Topic Overview: Business Intelligence, November 21, 2008.

Reporting tools show what has
happened and analytical tools
show what may or can happen.

Discovering Business Insights in Big Data Using SQL-MapReduce 4

Copyright © 2013 R20/Consultancy, all rights reserved.

• How high is the financial risk if a person 21 years old with no job is given a mortgage?

The challenge for discoverers is that they don’t always know exactly what they are searching
for, although they probably have a feeling or an inkling.

The Data Scientist – Nowadays, we call these discoverers who
try to gain knowledge or awareness of something not known
before, data scientists. The data scientist has been called the
sexiest job of the 21st century3 by the Harvard Business
Review. But what is a data scientist and what does he do? For
example, in an oil company, the ones responsible for analyzing soil test results to locate new oil
fields or for analyzing new techniques to find new oil fields faster, can be classified as data
scientists. Another clear example of a data scientist is an actuary working for an insurance
company. Actuaries deploy mathematics, statistics, and financial theory to analyze the financial
consequences of risk. Professors looking for cures for specific diseases by doing DNA research
can also be classified as data scientists.

Usually, data scientists use all the data and all the tools they can get their hands on. They use
analytics and reporting, but they won’t stop there. In other words, discovery is not a fancy new
term for analytics. Analytics is just one of the many tools used by a data scientist to get new
insights.

Although the term data scientist may be new, this profession has existed for a long time. For
example, Napoleon Bonaparte used mathematical models to help make decisions on
battlefields. These models were developed by mathematicians, Napoleon’s own data scientists.
Another (famous) example of that same time period is the Minard Map4. This is a good example
of a data scientist using geo visualization to analyze data. The map depicts the advance into
and retreat from Russia by Napoleon’s army in 1812-1813. This army was practically destroyed
during the retreat; the army left with 422,000 troops and came back with a mere 10,000. Charles
Joseph Minard was clearly a data scientist. Many more examples like this can be found.

Data scientists are smart people. They need business
knowledge, they need to understand the enterprise data,
they need to know how to deploy technology, they have to
understand statistical techniques, visualization techniques,
and, most importantly, they need to know how to interpret the
results. For example, if an analysis exercise shows that the
number of storks born has a strong correlation with the
number of babies born one year later, data scientists should have sufficient knowledge to
conclude that these variables do not have a direct relation, but that they are both dependent on
a third variable, one that probably hasn’t been included in the study yet.

The Data Scientist versus the Business Analyst – A traditional user of business intelligence systems is the
business analyst. A business analyst assists end users in making informed business decisions.
He exploits a data warehouse to uncover important facts and statistics that show an

3 T.H. Davenport and D.J. Patil, Data Scientist: The Sexiest Job of the 21st Century, Harvard Business Review, October
2012.
4 Wikipedia, see http://en.wikipedia.org/wiki/Charles_Joseph_Minard, May 2013.

Data scientists are
discoverers who try to gain
knowledge or awareness of

something not known before.

Data scientists need to
understand enterprise data,

technology, statistical
techniques, visualization

techniques, and they need to
be able to interpret results.

Discovering Business Insights in Big Data Using SQL-MapReduce 5

Copyright © 2013 R20/Consultancy, all rights reserved.

organization’s performance. He helps transform business needs in reports, he analyzes data
structures, and defines business concepts. Quite often, he operates on the frontier between the
IT department and the business departments.

Data scientists and business analysts may be using the same data, but they use that data
differently. As indicated, the discovery work of a data scientist is about searching and analyzing
data to produce new business insights that can lead to business opportunities. The work of the
business analyst is more concrete. He creates reports for himself and for end users, he helps
end users to develop their own reports, and so on.

The boundary between these two jobs is not as clear cut as one may expect. Business analysts
may be doing data scientists work occasionally, and vice versa. In fact, the person working as
data scientist today, may have the role of business analyst tomorrow.

3 The Discovery Process

The way data scientists work, is called the discovery process. In this chapter we list and
describe the characteristics of this process.

A Four Step Process – The discovery process consists of four steps (see also Figure 1):

• Data acquisition: In this first step, data is collected from various data sources. The data
scientist selects the data sources that may be useful for the study.

• Data preparation: In this step, data is transformed, aggregated, integrated, and
cleansed until it has the form that data scientists want for their study. For example, for
many data mining algorithms it can be useful to transform real life values to binary
values.

• Data analysis: In this step, data is analyzed with various types of techniques, including
simple reporting techniques; classic statistical techniques, such as forecasting,
predictive modeling, and clustering; data mining techniques; data visualization
techniques such as affinity visualization, path visualization, scatter clouds, geo-
visualization techniques; and time-series analysis.

• Data interpretation: When the techniques and tools present results and insights, it’s still
the responsibility of the data scientist to determine whether the results make sense. This
requires in-depth knowledge of the business and the data, and it demands common
sense.

Data
Acquisition

Data
Preparation

Data
Analysis

Data
Interpre-

tation

Figure 1 The discovery process
consists of four steps.

Discovering Business Insights in Big Data Using SQL-MapReduce 6

Copyright © 2013 R20/Consultancy, all rights reserved.

The Result of Discovery – The result of a discovery process is in most situations insights, and these
insights are formulated as a set of rules. These rules can be simple if-then rules, for example, if
two payments are done with the same credit card within 10 seconds, they are probably
fraudulent. Rules can also be advanced statistical formulas indicating the relationship between
specific variables. For example, a 10 degree rise in temperature increases sales of barbecue
meat with 300%. Sometimes rules are sophisticated, self-learning data mining models that can
predict customer behavior by combining historical and new incoming data.

Spinoff Results – It’s not uncommon that during the discovery process unexpected insights and
rules are found. These spinoffs can be as useful as the rules intended to be found. Remember
Alexander Fleming who discovered penicillin by accident. There are more well-known
examples like this. For example, chemist William Perkin wanted to invent a cure for Malaria. His
experiments lead accidently to the first-ever synthetic dye. And don’t forget George Crum who
discovered Coke by accident when searching for a cure for headaches.

No Clear Goal – Another characteristic that shows that data scientists are different from most other
BI users, is that their analysis work doesn’t always have a clear goal. The work they do is much
more free format, much more research-like.
Because the goal is not always that clear, classifying this process as “finding a needle in a
haystack”, doesn’t always make sense. If you’re looking for a needle in a haystack, the goal is
very clear, and with a good magnet it’s not even that complex. Discovery is much more a
stepwise refinement process. With each step, the data scientist may get closer to useful insights.

Wide Range of Analysis Techniques – As indicated, data scientists use a wide range of analysis
techniques to discover new insights. Many well-known statistical techniques can be used to find
rules. A data scientist should have access to all the tools and techniques he needs. He should
also be able to mix and match them. For example, he may want to apply a time-series analysis
first, followed by a geo-visualization of the result. Data scientists should not be restricted in
discovering valuable insights due to the lack of tools and techniques.

Data Overload Doesn’t Exist – The more data a data scientist has access to, the more discovery
options he has. In this context, more means three things. First, it means more detailed data—no
aggregate data. Aggregation of data can hide potential insights. Dealing with detailed data is a
typical aspect of the big data trend. Nowadays, the technology exists to process massive
amounts of data fast.
Second, more means more data sources. Having access to a data warehouse is probably not
enough for data scientists. They also need access to large files with sensor data, spreadsheet
data, external data sources, and so on. It wouldn’t be the first time that rules are discovered by
enriching internal business data with external data.
Third, more means more types of data. Giving data scientists access to structured data is very
useful, but not all the data has a very rigid structure. Data scientists may also require access to
what some call unstructured, multi-structured, semi-structured, or poly-structured data.

Data Scientists are Creators of Data – Usually, users of reporting tools don’t create their own data.
They access data stored in a data warehouse or data mart. In some situations, it could be that
the data the data scientists need, doesn’t even exist yet. The consequence can be that
dedicated projects must be initiated to create and collect the required data. An interesting
example of such a project is the Amsterdam Born Children and their Development (ABCD)

Discovering Business Insights in Big Data Using SQL-MapReduce 7

Copyright © 2013 R20/Consultancy, all rights reserved.

project. This project started in 2001 and still continues. The project tracks the health of 8,000
children. Every so many years these children have a checkup. The goal of this long lasting study
is to discover what the relationship is between early growth and development on the overall
health later on in live. This study is a good example of where the right data has to be created
first.

The Discovery Process is an Iterative Process – Figure 1 suggests that the discovery process is a serial
process: when one step is finished, the next one starts, and we never return to a previous step.
However, less would be closer to the truth, the discovery process is very iterative. For example,
when a data analysis step has been finished, the conclusion may be to collect more data, and
start all over again. Even a data preparation step may lead to a return to the data acquisition
step. In fact, this entire four-step process may have to be repeated several times before the right
insights rise to the surface.

Long Lasting Discovery Projects – Some discovery processes are completed in one day, but they can
also last for weeks, months, and even years. For example, in April 2013, researchers working at
the academic hospital in the city of Utrecht in The Netherlands discovered a formula that
predicts for patients, who have had an heart attack or stroke, the risk of new health problems
ten years later. The formula looks at fourteen variables, including age, gender, smoking habits,
and blood pressure. This study started in January 1996 and ended in 2013. This is a good
example of long lasting discovery projects.

Actionable Discovery Results – When a discovery process is finished, the organization has
experienced no advantages yet—no money has been made, no ROI. The discovery process has
to be followed up by a step called Act. In this step, the gained insights have to be used or
implemented. Examples of implementing insights are: organization policies are changed,
decision rules are embedded in operational applications, business processes are optimized,
customers are offered special discounts, and so on. Without the Act step, the entire discovery
exercise has been for nothing. In other words, it’s important that discovery results are
actionable. Note that the data scientist is not always involved in the Act.

4 Requirements for a Discovery Platform

To support data scientists in their discovery process, a reporting or an analytical tool is not
sufficient. They need a feature-rich, fast, and flexible discovery platform that assists them with
all four discovery steps. Such a platform should at least support the following features:

Data Scalability – Many traditional information systems store
and manage large numbers of records. The last years, new
applications have been developed that store amounts of data
magnitudes larger than those in the more traditional applications. For example, click-stream
applications, sensor-based applications, and image processing applications all generate
massive numbers of records per day. The amount of records stored surpasses more often than
not hundreds of millions of records.
Nowadays, the popular term used for such systems is big data systems. Because these systems
store data on such a detailed level, new insights that have always been hidden, become visible.
Therefore, a discovery platform should allow data scientists to analyze big data fast and

A discovery platform should
offer data scalability.

Discovering Business Insights in Big Data Using SQL-MapReduce 8

Copyright © 2013 R20/Consultancy, all rights reserved.

efficiently. In other words, a discovery platform should offer data scalability. Data scalability5 is
the ability of a system to store, manipulate, analyze, and process ever increasing amounts of
data without reducing overall system availability, performance, or throughput.

Heterogeneous Data Access – Most users of BI systems find the data they need in the enterprise data
warehouse or in one of the data marts. Not so for data scientists. The data they need can be
hidden in numerous data stores of which the data warehouse is probably one. But they may also
want to include data from external websites in their analysis
research, results from their own tests and studies, textual
data in documents, and so on. Data scientists are data-
greedy. For them the rule applies: more is better, because by
being able to analyze more data, more valuable insights can reveal themselves. Therefore, to
support the data acquisition step, a discovery platform should make it easy to access multiple
data stores, including data stores using different technologies. In addition, the platform should
allow the mixing and matching of data from this heterogeneous set of data stores.

Analysis of Complex Values – Most data values stored in SQL
database servers are simple numbers, strings, and dates.
But in more and more systems, data values are complex
values, such as weblog entries, EDIFACT message, text
documents, and audio streams; see also Section 5.1. Obviously, these data values do have
structure, but that structure is part of the value itself. The result is that the database server isn’t
aware of that structure.
The amount of complex values that organizations store is increasing. If not already, analytics of
large sets of complex values will be on everyone’s agenda in the near future. It’s important that
a discovery platform allows data scientists to analyze such complex values.

Data Preparation Techniques – When the required data sources have been identified and have been
made available for the data scientists, the data must be turned into a form that makes analysis
more successful. In other words, data preparation must take place before analysis can start.
Therefore, it’s important that a discovery platform supports many features to integrate all the
data, transform it, cleans it, filter it, and so on. For complex values, data preparation means that
a structure must be assigned to these values before they are analyzed.

Multiple Analysis Techniques – As indicated in Chapter 3, data
scientists should be able to use a multitude of analysis
techniques, including simple reporting techniques; classic
statistical techniques, such as forecasting, predictive
modeling, and clustering; data mining techniques; data
visualization techniques such as affinity visualization, scatter
clouds, geo-visualization techniques; and time-series analysis. Therefore, to support the data
analysis step, a discovery platform should offer an wide-range and integrated set of analysis
techniques.

Multiple Analysis Tools – Usually, data scientists use all kinds of tools to analyze data, ranging from
more classical statistical tools to visualization tools. A discovery platform should allow data

5 Eugene Ciurana, Getting Started with NoSQL and Data Scalability, see http://refcardz.dzone.com/refcardz/getting-
started-nosql-and-data

A discovery platform should
be able to analyze complex

values.

Data scientists are data-
greedy.

A discovery platform should
offer an wide-range and
integrated set of analysis

techniques.

Discovering Business Insights in Big Data Using SQL-MapReduce 9

Copyright © 2013 R20/Consultancy, all rights reserved.

scientists to deploy all these different tools on the same data. They should be able to mix and
match features of the analysis tools. For example, they may want to deploy a geographical
grouping of data before it’s passed to a statistical analysis. Or, they want to sessionize weblog
entries, then deploy a sentiment analysis, and finally, use a visualization technique. In addition,
it should not be needed to create replicas of the data for each and every tool. This would raise
project costs and would slow down the discovery process too much. In an ideal situation, many
of the results created with one tool should be reusable by another tool.

Interactive Analysis – The discovery process is not a serial
process, but a highly iterative one; see Chapter 3. Therefore,
a discovery platform must make it possible to run an
analysis, change specifications, run the analysis again, and
so on. A discovery platform can do this by supporting interactive analysis: when the data
scientist wants to run a new query, he should be able to execute it right away. No scheduling of
queries should be needed. The platform should not make data scientists wait too long between
queries.

High-Speed Analysis – It’s evident that a discovery platform offers
high-speed analysis. Even if big data sets are analyzed
using complex analysis algorithms, results should be
displayed within seconds (and preferable faster than that).
The faster an analysis is completed, the more an alternative hypothesis can be tested.
If analysis of a potential correlation between two variables requires two hours of processing, the
data scientist will probably only analyze the variables he thinks are of interest. If such an
analysis only takes a few seconds, he may want to analyze them all. This increases the chance
that valuable results are discovered.
In addition, when performance is slow, a data scientist can lose his train of thought.
It’s also important that a discovery platform offers high-speed analysis out-of-the-box. In other
words, it should not be needed to first tune and optimize the database and database server
before an analysis can start. Again, this would delay the discovery process too much.

High-Level Development Language – A high-level development
language is important for productivity and for the iterative
nature of discovery. Data scientists should not be slowed
down in their thinking process by the use of a low-level
development language. In addition, it’s important that existing developments can be reused
easily.

5 Technologies for Implementing a Discovery Platform

Nowadays, data scientists can choose between many different technologies and products to
implement a powerful discovery platform. For example, they can use a classic SQL system, an
advanced reporting and analytical environment, a SQL-MapReduce based system, a NoSQL
system, or a mix of these solutions. Before we can answer the question what the best discovery
platform is, some of these technologies are described in this chapter. Chapter 6 addresses the
question what the best discovery platform is.

A discovery platform should
offer a high-level

development language.

A discovery platform should
support interactive analysis.

Out-of-the-box a discovery
platform should offer
high-speed analysis.

Discovering Business Insights in Big Data Using SQL-MapReduce 10

Copyright © 2013 R20/Consultancy, all rights reserved.

5.1 The World of Big Data, NoSQL, and Schemas

One of the hottest trends in the IT industry is undoubtedly big data. With big data comes a new
generation of NoSQL systems for data storage, such as Hadoop, Cassandra, and MongoDB.
One of the key differences between NoSQL systems and the more classic SQL systems is the
way they treat schemas. A schema describes the structure of data. Because schemas are an
important technological concept for evaluating discovery platforms, this section explains the
different styles of handling schemas.

Big Data and Data Scientists – Big data is a blessing for data scientists, because it gives them data
on a level of detail that may reveal insights that would be impossible to see with aggregated or
condensed data. Imagine a utility company that measures electricity consumption once a
month. By deploying big data systems, that same company can switch to measuring
consumption every few seconds. Because of this higher level of detail, insights may become
visible that have always been completely hidden.
The interest of big data has always existed, even before the term was invented. However, most
of the big data needs were impossible to implement with older technology or unaffordable.
What has changed and what has given big data its position in the spotlights, is that hardware
and software technologies have become available that have been designed specifically to
support big data environments for reasonable prices.

NoSQL – Many of the new systems for big data storage are referred to with the intriguing term
NoSQL. The reason this name has been selected is simple: most of them do not support SQL
nor the relational model for managing data. For example, the group NoSQL systems called
document stores uses a more hierarchical model for organizing data, and the column-family
stores support tables in which each record can have a different set of values. What
distinguishes them most from the well-known SQL systems is how they handle schemas.

The Schema – In SQL systems, when a table is created, a schema is assigned. A schema
describes the structure of all the records in the table. It indicates how many columns there are,
what the names of those columns are, what the data types are, which columns have unique
values, and so on. All records of a table in a SQL system have the same schema. In a way, all
records of a table inherit the schema of that table.

There are two different ways for data storage systems to handle schemas, these are called
schema-on-write and schema-on-read. Both are described in this section.

Schema-on-Write – Classic SQL systems support schema-on-
write. This means that all the data written to a database has
a schema. For each value of each record is known to which
column of the table it belongs. A schema is not optional.

Not only SQL systems use schema-on-write. Older, so-called pre-relational databases, such as
IMS and IDMS, also support schema-on-write. In addition, when data is stored as XML
documents, schema-on-write is used as well, because the schema of the data is known at the
time of writing. The advantage of schema-on-write is that when an application accesses the
data, the schema is known, and therefore it doesn’t have to apply application logic to assign a
schema to the data during access.

With schema-on-write all
data written to a database

has a schema.

Discovering Business Insights in Big Data Using SQL-MapReduce 11

Copyright © 2013 R20/Consultancy, all rights reserved.

Two forms of schema-on-write can be identified: fixed and variable.

In SQL systems all records in a table have the same schema. In fact, it’s impossible for a SQL
table to contain one row with ten columns and another row with twelve columns. This also
means that if a new column has to be added to one record, that column must be added for
every record. We refer to this form as fixed schema-on-write.

The alternative to fixed schema-on-write is variable schema-on-write. Several NoSQL systems
use this. When data is stored in their databases, a schema in XML, JSON, or BSON form is
written together with the data itself, thus schema-on-write is used. However, different records in
one and the same table (or an equivalent concept) can have different schemas. In other words,
the schema of each record in a table varies.

The advantage of variable-schema-on-write is flexibility. When a new column or element has to
be added to only one record, it only has to be done for that one record. The other remain
unchanged. No resource intensive operation has to be invoked to reorganize all the other
records in the table as well.

Schema-on-Read – The opposite of schema-on-write is schema-
on-read. When a database server uses schema-on-read the
data has no schema when it’s stored. Or, more precisely, the
database server doesn’t know what the schema is, the data
values are like blobs of bytes. For example, the following
long string of comma-separated values is a value without a
schema:

"Anchorage Daily News","PO Box 149001","Anchorage","AK","99514-9001","907-257-4200",
"907-258-2157","71","","82","http://www.adn.com/",newsroom@adn.com

If this string is stored as one value in a column of a SQL table, the database server doesn’t
understand the structure of this value and will treat it as one atomic value. Such values are
called complex values or schema-less values. Both terms are used interchangeably in this
whitepaper.

An EDIFACT message representing an invoice (the XXX code is used to separate elements) is a
more complex example of a schema-less value:

UNB+UNOA:1+005435656:1+006415160:1+060515:1434+00000000000778'XXXUNH+00000000000117+INVOIC:D:97B:UN
'XXXBGM+380+342459+9'XXXDTM+3:20060515:102'XXXRFF+ON:521052'XXXNAD+BY+792820524::16++CUMMINSMIDRANG
EENGINEPLANT'XXXNAD+SE+005435656::16++GENERALWIDGETCOMPANY'XXXCUX+1:USD'XXXLIN+1++157870:IN'XXXIMD+
F++:::WIDGET'XXXQTY+47:1020:EA'XXXALI+US'XXXMOA+203:1202.58'XXXPRI+INV:1.179'XXXLIN+2++157871:IN'XX
XIMD+F++:::DIFFERENTWIDGET'XXXQTY+47:20:EA'XXXALI+JP'XXXMOA+203:410'XXXPRI+INV:20.5'XXXUNS+S'XXXMOA
+39:2137.58'XXXALC+C+ABG'XXXMOA+8:525'XXXUNT+23+00000000000117'XXXUNZ+1+00000000000778'

Someone familiar with the structure of EDIFACT messages knows what all these codes mean,
but for the database server this is just one large value.

With schema-on-read, stored
data has no schema, the

schema is assigned when
reading the data.

Discovering Business Insights in Big Data Using SQL-MapReduce 12

Copyright © 2013 R20/Consultancy, all rights reserved.

The following example of a schema-less value is a record coming from a weblog:

datestamp ip request 6/1/2012 11:10:19 AM 107.1.187.170 GET /x.php?u=http://studio-
5.financialcontent.com/synacor?Page=QUOTE&Ticker=DDD HTTP/1.1 6/1/2012 5:53:49 AM 107.1.2.180 GET
/tv/3/player/vendor/Chef%20Tips/player/fiveminute/content/steak/asset/gnrc_15879500 HTTP/1.1
6/1/2012 8:55:54 AM 107.34.51.63 GET
/tv/3/search/content/The%20Andy%20Griffith%20Show/s/The%20Andy%20Griffith%20Show HTTP/1.1 6/1/2012
3:12:43 PM 107.5.115.117 GET
/tv/3/search/content/Kathie%20Lee%20Gifford's%20epic%20'Today'%20gaffe/s/Kathie%20Lee%20Gifford's%2
0epic%20'Today'%20gaffe HTTP/1.1 6/1/2012 4:48:35 PM 108.225.132.245 GET
/tv/3/search/content/Deadliest%20Catch/s/Deadliest%20Catch HTTP/1.1 6/1/2012 10:25:12 AM
108.246.20.125 GET /x.php?u=http://studio-5.financialcontent.com/synacor?Page=QUOTE&Ticker=DJ:DJI
HTTP/1.1 6/1/2012 1:58:14 AM 108.246.25.117 GET
/tv/3/player/vendor/Chef%20Tips/player/fiveminute/content/steak/asset/gnrc_15879500 HTTP/1.1

Evidently, all three example values have a structure, but if these values are stored like above,
the database server won’t understand their structure, because it doesn’t know its schema.
There are more examples of large schema-less values that have a structure for which the
database server doesn’t know the schema, such as text blocks, audio, and video.

For applications to be able to process schema-less values, the data must be assigned a
schema first. In other words, when the data is read, it should be assigned a schema, hence the
name schema-on-read.

Schema-on-read is not limited to NoSQL systems. SQL systems support schema-on-read as
well. Imagine a simple SQL table consisting of two columns: one containing some kind of
identifier and the second one containing schema-less values, that’s schema-on-read as well.
Note that a table in a SQL system can have columns that hold values with a schema (schema-
on-write) and other columns with schema-less values (schema-on-read).

Using schema-on-read has three advantages. One, it’s flexible, because new data elements
can be added to records without having to change the schema of the table. Second, loading of
data is fast, because the incoming data doesn’t have to be processed during the load
process—no schema has to be assigned. The data is stored in its original form. Third, because
the data hasn’t been given a schema, the applications can change how they want to look at the
data without having to change the table schema. The schema is determined when the data is
read.

The main disadvantage of schema-on-read is that when data is retrieved, execution time has to
be spend on assigning a schema to the data. Schema-on-read has two sub-forms:

• With schema-on-application-read it’s the application that assigns a schema to the data.
The schema-less data is retrieved by the database server from the data store and
transmitted unchanged to the application. The application contains the logic that
understands the structure and assigns a schema.

• With schema-on-database-read it’s the database server that retrieves the schema-less

data from the data store and, before it’s transmitted to the application, executes the
logic to assign a schema. So, the application receives data with a schema. The
advantage of schema-on-application-read is that database servers usually run on more
powerful server platforms and are therefore able to execute the logic faster. Especially if

Discovering Business Insights in Big Data Using SQL-MapReduce 13

Copyright © 2013 R20/Consultancy, all rights reserved.

it’s a massively parallel server environment, assigning schemas, even when the values
are highly complex, is fast because the logic to assign schemas is parallelized. In
addition, a database server can apply filters (if relevant) so that not all the data has to be
transmitted to the application. This speeds up overall performance.

Schema-On-Read Offers Flexibility to Discovery – For discovery, storing
all the incoming data in its original form (schema-on-read) can
be useful, because the goal of discovery is not always clear in
advance. Schema-on-read allows data scientists to assign
different schemas at different times to the same data without
the need to restructure databases. Schema-on-read fits the flexibility requirements of data
scientists.

5.2 Using SQL for Discovery

Almost all database servers, young and old, support SQL. It’s the most successful database
language ever. It’s the language implemented in the majority of available database servers,
including those specifically designed for analytics, sometimes called analytical database
servers. This section addresses the question whether SQL is really the right language for
discovery?

Complex SQL Queries – SQL has always been a language with very strong query capabilities. In fact,
in the 1970s and 1980s, SQL products were primarily deployed for reporting and analytics. They
did support transactions, but in this respect they were not as strong as the so-called
hierarchical and network database servers, such as IMS, IDMS, and UDS.

Since the 1980s, the query capabilities of SQL database servers have improved and extended
even further. Nowadays, SQL is able to support the most complex forms of reporting and
analytics. It’s hard to come up with a question that is impossible to formulate with SQL. The
main challenge for a database server is to run all those queries fast? The problem is that some
queries are complex and hard to optimize. Let’s illustrate this with a few examples.

Example: The following DEPARTURES table stores the scheduled departures of flights from a specific
airport:

DEP_ID DEP_DAY DEP_TIME DESTINATION AIRLINE DURATION
1 2010-04-01 14:20 London Delta 9:30
2 2010-04-01 14:25 New York Southwest 4:00
3 2010-04-01 14:50 New York American Airlines 4:15
4 2010-04-01 15:10 London American Airlines 8:50
: : : : : :
16 2010-04-01 20:05 Paris Delta 8:30
17 2010-04-01 20:15 Paris Air France 8:40
18 2010-04-01 20:20 London Virgin 9:00
19 2010-04-01 20:20 New York American Airlines 4:00
20 2010-04-01 20:40 San Francisco Southwest 3:30
21 2010-04-01 20:55 San Francisco Delta 3:50
22 2010-04-01 21:00 New York Delta 4:10
23 2010-04-01 21:35 London Britisch Airways 9:00
: : : : : :

Schema-on-read fits the
flexibility requirements of

data scientists.

Discovering Business Insights in Big Data Using SQL-MapReduce 14

Copyright © 2013 R20/Consultancy, all rights reserved.

Imagine the following user query: Get all the flights to London for which another flight exists to
London that leaves within an hour on the same day:

SELECT *
FROM DEPARTURES AS D1
WHERE DESTINATION = 'London'
AND DEP_TIME + 60 MINUTES >=
 (SELECT MIN(DEP_TIME)
 FROM DEPARTURES AS D2
 WHERE DESTINATION = 'London'
 AND D2.DEP_TIME > D1.DEP_TIME
 AND D2.DEP_DAY = D1.DEP_DAY)
ORDER BY DEP_TIME

The result of this query is a set of rows that includes the row where the DEP_ID is equal to 1. Note
this is a typical time-series type of query. The input data is selected according to the specified
criteria and ordered by the specified timestamp column.

For most database servers, it’s hard to process this query fast, especially if the table contains
millions (or billions) of rows and if the DEPARTURES table has to be scanned several times.
Additionally, if the table has been partitioned, it is questionable whether parallelization of the
query improves the performance.

Evidently, this is a simple example, and in reality this DEPARTURES table does not contain millions of
rows. But it’s easy to come up with comparable situations and queries for which millions or even
billions of rows have to be accessed. For example, if a credit card company wants to see
whether two charges on a credit card didn’t happen too close together in a certain period of
time, without any doubt massive amounts of records have to be analyzed. Or, if an organization
wants to determine how many different internet sessions were started by one user, where a
session is defined as a number of clicks on the website with limited time in between, again
millions and millions of records may have to be accessed.

The more complex the SQL query is and the larger the data set is, the bigger the chance a SQL
database server is not able to come up with a fast processing strategy. Take the following
question: Get all three items that are frequently purchased together by customers in the same
retail transaction. This question is like a market basket analysis. The corresponding SQL query
is lengthy and very hard to optimize for most database servers.

SELECT A.PROD_DESC AS ITEM1, B.PROD_DESC AS ITEM2, C.PROD_DESC AS ITEM3,
 COUNT (*) AS CNT
FROM (SELECT SF.STORE_ID, SF.REG_ID, SF.TRAN_NO, SF.ITEM_ID, SF.DT, PD.PROD_DESC, PD.PRICE
 FROM SALES_FACT SF, PRODUCT_DIM PD
 WHERE SF.ITEM_ID = PD.ITEM_ID) AS TRANSACTIONS A,
 (SELECT SF.STORE_ID, SF.REG_ID, SF.TRAN_NO, SF.ITEM_ID, SF.DT, PD.PROD_DESC, PD.PRICE
 FROM SALES_FACT SF, PRODUCT_DIM PD
 WHERE SF.ITEM_ID = PD.ITEM_ID) AS TRANSACTIONS B,
 (SELECT SF.STORE_ID, SF.REG_ID, SF.TRAN_NO, SF.ITEM_ID, SF.DT, PD.PROD_DESC, PD.PRICE
 FROM SALES_FACT SF, PRODUCT_DIM PD
 WHERE SF.ITEM_ID = PD.ITEM_ID) AS TRANSACTIONS C
WHERE A.STORE_ID = B.STORE_ID
AND B.STORE_ID = C.STORE_ID
AND A.STORE_ID = C.STORE_ID
AND A.REG_ID = B.REG_ID
AND B.REG_ID = C.REG_ID (continues on next page)

Discovering Business Insights in Big Data Using SQL-MapReduce 15

Copyright © 2013 R20/Consultancy, all rights reserved.

AND A.REG_ID = C.REG_ID (continuation of previous page)
AND A.TRAN_NO = B.TRAN_NO
AND B.TRAN_NO = C.TRAN_NO
AND A.TRAN_NO = C.TRAN_NO
AND A.DT = B.DT
AND B.DT = C.DT
AND A.DT = C.DT
AND A.ITEM_ID <> B.ITEM_ID
AND A.ITEM_ID <> C.ITEM_ID
AND B.ITEM_ID <> C.ITEM_ID
GROUP BY A.PROD_DESC, B.PROD_DESC, C.PROD_DESC
HAVING COUNT(*) > 1000
ORDER BY COUNT(*) DESC

To perform such a market basket analysis, the data warehouse has to keep track of what and
when each individual customer buys. These tables normally contain millions and millions of
rows. This means a highly complex query is executed on a very large database. It’s hard for
most database servers to run this query quickly. In fact, sometimes these queries become so
slow, that users are not allowed to run them online anymore, or worse, they are not even
allowed to run them at all. Such a situation definitely limits the analytical capabilities.

Declarativeness and Storage Independency – Why are some of those
queries so slow and why doesn’t a database server always
come up with a perfect processing strategy? Many factors
influence the performance of queries, but two fundamental
properties of SQL, declarativeness and storage indepen-
dency, have a big impact. These two properties are and
always have been fundamental to SQL. They were the basic design principles when the
language was initially designed in the IBM labs6, 7, 8.

When SQL was developed in the 1970s, it was supposed to be a declarative language. In this
case, declarative means that a SQL developer only has to program what has to be done, and
not how it should be done. For example, in the next query we only specify that we’re interested
in customers headquartered in New York:

SELECT *
FROM CUSTOMERS
WHERE LOCATION = 'New York'

Nowhere in this query do we specify anything that relates to how the query should be
processed. For example, no loops are programmed. The database server itself must determine
how to get the requested data from the database to the user.

The second property of SQL is storage independency. If a system supports storage
independency, it hides how data is physically stored and accessed. For example, when a query
is specified, nowhere do we specify that a particular index should be used, nor do we specify

6 R.F. Boyce, and D.D. Chamberlin, Using a Structured English Query Language as a Data Definition Facility, IBM RJ
1318, December 1973.
7 D.D. Chamberlin et al, SEQUEL 2: A unified approach to Data Definition, Manipulation and Control, IBM R&D,
November 1976.
8 D.D. Chamberlin, A Summary of User Experience with the SQL Data Sublanguage, IBM RJ 2767, March 1980.

Declarativeness and storage
independency have always

been the two properties
fundamental to SQL.

Discovering Business Insights in Big Data Using SQL-MapReduce 16

Copyright © 2013 R20/Consultancy, all rights reserved.

the physical location of the table, we don’t indicate that intermediate results should be kept in
memory, or the order in which rows should be retrieved from disk. All these technical aspects
are hidden for the SQL developers.

These two language properties are independent of each other. For example, it’s possible to
design a language that is non-declarative but storage independent, and one that is declarative
and storage dependent. Again, SQL is both declarative and storage independent.

Advantages of Declarativeness and Storage Independency – The main advantages of these two properties
are improved productivity, maintainability, and flexibility:

• Improved Productivity: Having to write declarative code and not having to deal with the
“how” implies having to write less code. This minimizes the time needed to write code
compared to having to write the equivalent solution in a non-declarative language. In
addition, if developers don’t have to concern themselves with details related to storage
and access, less code has to be designed and written.

• Improved Maintainability: For maintenance the same rules apply as for productivity: less

code implies having to maintain less code. And the storage independence property
makes sure that the maintenance programmer doesn’t have to study the storage
characteristics in order to make the necessary changes.

• Improved Flexibility: Because SQL is storage independent, changes to the storage layer,

such as table structures, indexes, and partitions, can be made without the need to
change the SQL code.

These properties stem from the relational model, the theory on which SQL is based. The founder
of the relational model, Edgar F. Codd (see Figure 2), indicated in his seminal paper9, written in
response to his receipt of the ACM Turing award, that his goal for developing the relational
model was data independence (which relates to the term storage independency): “The most
important motivation for the research work that resulted in the relational model was the
objective of providing a sharp and clear boundary between the logical and physical aspects of
database management […]. We call this the data independence objective.”

Why Are SQL Queries Sometimes Slow? – Why can declarativeness and storage independency have a
negative impact on performance? Because of these properties, a SQL database server has to
transform a query into an access plan that describes in detail how the data should be
accessed, joined, grouped, filtered, and so on. Such an access plan is not declarative and is not
storage independent. It’s a precise, step-by-step description of how data should be accessed. It
contains references to indexes and specifications on how to parallelize the query.

It’s the optimizer, a module belonging to the database server, that is responsible for
transforming a query into an access plan. The smarter an optimizer is, the faster the queries.
Through the years, the quality of optimizers has improved, but still, for some queries it remains
hard to come up with an efficient access plan. This is one of the main reasons why performance
is not always perfect.

9 E. F. Codd, Relational Database: A Practical Foundation for Productivity, Turing Award Lecture in Communications
of the ACM, Volume 25, Number 2, February 1982.

Discovering Business Insights in Big Data Using SQL-MapReduce 17

Copyright © 2013 R20/Consultancy, all rights reserved.

Figure 2 Edgar F. Codd’s ACM Turing Award lecture.

SQL Improves Discovery Productivity – The declarativeness and
storage independency of SQL are beneficial to productivity,
maintenance, and flexibility. Even users with limited
knowledge of databases can write queries. The answer to
the question raised at the start of this section whether SQL is
really the right language for discovery, is yes. SQL is a highly
recommended language for data scientists to be used for preparing and analyzing data,
because of its high productivity, high flexibility, and low maintenance. A drawback of SQL
database servers may be that the queries that are hard to optimize may perform poorly.

5.3 Functions in SQL

A feature of SQL that enriches its analytical capabilities is the function. Functions are not new to
SQL. In fact, the first versions of SQL already supported them, although those first functions
were simple ones, such as truncate a string and calculate the square root. Through the years
most SQL implementations have been extended with more advanced functions, some of them
designed specifically for analytics.

When discussing functions, a distinction has to be made between two groups of developers. On
one hand, there are developers who program the functions, and on the other, there are SQL
developers who write SQL statements that invoke the functions. To keep SQL’s declarative and
storage independent properties intact, it’s important that SQL developers don’t need to concern
themselves with how functions work, in which language they have been coded, and so on. That
should only be relevant to the function developer.

Functions can be classified in many different ways. In this whitepaper, the following four
classifications are used.

Built-in Functions and User-defined Functions – The first classification is based on who the function
developer is. Each database server comes with a set of functions developed by the vendor itself.
These are called built-in or standard functions. SQL developers have no idea in which language

SQL is a highly
recommended language for
data scientists to be used for

preparing and analyzing
data.

Discovering Business Insights in Big Data Using SQL-MapReduce 18

Copyright © 2013 R20/Consultancy, all rights reserved.

these functions are coded, how their internal algorithms work, and whether their processing can
be parallelized, nor do they need to know.

In contrast, SQL also supports user-defined functions (UDFs). UDFs are coded by SQL
developers themselves. This gives the developer full control over how the function is
programmed.

Whether a function is built-in or user-defined, the SQL developer doesn’t see the difference
between those two types of functions; see the next example:

SELECT FLIGHT, TRUNCATE(DEPARTURE_TIME, MINUTES)
FROM DEPARTURES AS D1
WHERE BANK_HOLIDAY(DEPARTURE_TIME) = 1

In this example, TRUNCATE is a built-in function, whilst BANK_HOLIDAY is a user-defined function that
determines whether a specific day is a bank holiday. The developer writing the SQL statement
doesn’t see the difference between those two types of functions. For him the SQL code is still
declarative, while the developer, who wrote the function BANK_HOLIDAY, may have used a non-
declarative language, such as Java and C++.

Scalar Functions and Table Functions – The second way of classifying functions is by the result they
return. Functions exist that always return one scalar value, such as a string, a date, or a
number, and there are those that return a set of rows in which each row consists of the same
number of values. The former ones are called scalar functions, and the latter table functions.

The functions TRUNCATE and BANK_HOLIDAY are both examples of scalar functions. Other examples of
scalar functions are change a dollar value into a euro value, and subtract an average value
from a specific row value. Scalar functions can be used, for example, in the conditions of WHERE
clauses to select rows, or in SELECT clauses to transform values of a row.

An example of a table function is LAST_FIVE_ROWS, which returns the last five rows of a table (for
example, the ones with the highest primary key value). Another example could be a function
that reads records from a sequential file stored outside the database and presents those
records as rows. Table functions are mostly used in the FROM clause:

SELECT AVG(DURATION)
FROM LAST_FIVE_ROWS(DEPARTURES)

Pure SQL, Procedural, and External Functions – The third way of classifying functions is based on the
language used to code them:

• Pure SQL functions: The bodies of these functions consist of one or two pure SQL
statements. With pure SQL we mean the classic declarative SQL statements, such as
INSERT, DELETE, and UPDATE.

• Procedural functions: The bodies of these functions are written with declarative and non-

declarative statements, such as while-do and if-then-else. Those non-declarative
statements are part of the SQL language itself and are processed by the database
server. Non-declarative statements are supported by many SQL database servers,

Discovering Business Insights in Big Data Using SQL-MapReduce 19

Copyright © 2013 R20/Consultancy, all rights reserved.

including DB2, Oracle, Sybase, and Teradata. Most of these non-declarative statements
resemble comparable Pascal and Ada statements, but are proprietary.

• External functions: The bodies of these functions are developed in external languages,

such as Java, C#, or possibly even Cobol. They may contain declarative SQL statements.
The database server doesn’t typically process these external functions, as an
application server or a special engine is typically responsible.

Simple or Complex Functions – The fourth way of classifying functions is based on whether the body of
the function contains queries: a simple function doesn’t, whereas a complex function does. For
example, if a function contains only a calculation, it’s a simple function. But a function that
determines whether the value of an input parameter is less than the average value of a column,
probably needs to query a table, making it a complex function.

Functions Enrich SQL for Discovery – When a SQL system is used
as discovery platform, it’s important that it supports many
built-in analytical functions and that it allows that UDFs are
developed to enrich the analytical functionality. This way,
SQL stays declarative and storage independent, improving
productivity and maintenance, and making it easy to write
SQL queries that invoke advanced analytical functions.

Note: Extending SQL with functionality by adding functions is not new. For example, functions
have been added to support manipulating and querying XML documents. Some SQL systems
even offer functions to extend SQL statements with XPath and XQuery expressions. In this case,
SQL operates as a host language for those other languages. Others have extended SQL by
adding functions for data mining algorithms.

5.4 Parallelization of SQL Queries and SQL Functions

As indicated, performance and scalability are important to discovery. A discovery platform must
be able to run even complex forms of analysis fast, and it should be able to do this on massive
amounts of data. This section describes internal architectures of database servers and how
they use parallelization to improve performance.

A Parallel Database Server – To speed up query performance, most database servers can exploit
multi-processor hardware by distributing the query processing over as many processors as
possible. This is called parallelization of queries. This section explains why parallelizing queries
can improve performance, but that some queries are hard to parallelize. We begin by
introducing some terminology.

In order to distribute query processing over multiple processors, the architecture of many
database servers is distributed. Figure 3 shows the typical architecture for a parallel database
server. The database server has processing modules, frequently called nodes. One of those
nodes is called the Master or the Queen, and the other nodes are Workers. Each Worker
manages a number of tables or table partitions. Usually, the Master knows where all the data is

When a SQL system is used
as discovery platform, it

should support many built-in
analytical functions and the

development of UDFs.

Discovering Business Insights in Big Data Using SQL-MapReduce 20

Copyright © 2013 R20/Consultancy, all rights reserved.

stored. The Master and the Workers can run on different processors in one single machine, or
they can be distributed over a network or cluster of machines.

Master

Worker Worker Worker

SQL Query

Database
Server

Figure 3 Typical architecture for parallel
database servers.

When an application sends a query to the database server, it’s first transmitted to the Master;
that’s where all the processing starts. The Master breaks a query in a number of smaller
queries depending on which tables are accessed, on which nodes those tables are located, and
how the table rows are partitioned. Next, these so-called query snippets are distributed across
the Workers. The Workers process the query snippets and return intermediate results back to
the Master. The Master merges all those intermediate results into one final result, if needed it
does some extra processing, and the final result is returned to the application.

In some database server architectures, a Worker can also play the role of Master. In other
words, when such a Worker receives a query snippet, that snippet is broken into even smaller
snippets and those are shipped to lower level Workers. These Workers return their results back
to the Worker/Master. The latter combines all these results and returns the combined result to
the real Master. This process continues for every level of Workers. This type of architecture
makes it possible to exploit clusters with high numbers of processors.

The main goal of this architecture is to let the Workers do as much as possible of the query
processing in parallel, and to let the Master(s) do as little as possible, so that the Master doesn’t
become the bottleneck.

Different Forms of Query Parallelization – Different forms of query parallelization exist. Inter-query
parallelism means the query workload is parallelized: different queries run on different
processors. Another form, called intra-query parallelism, is where the processing required for
one particular query is distributed over multiple processors. The first form improves the
workload, whereas the second improves the response time of individual queries.

Two sub-forms exist of the second form: inter-operation parallelism and intra-operation
parallelism. Each query is broken into a set of operations for processing. An operation can be a
sort, a scan, a join, or a projection. With inter-operation parallelism, the processing of different

Discovering Business Insights in Big Data Using SQL-MapReduce 21

Copyright © 2013 R20/Consultancy, all rights reserved.

operations (belonging to one query) is distributed over multiple processors. This can definitely
improve the query response time. However, if one of the operations involves a scan of millions of
rows, and that scan is not parallelized, that one operation can still take minutes to complete,
therefore slowing down the processing of the entire query.

With intra-operation parallelism the processing of an operation, such as a scan, is distributed
over multiple nodes. Intra-operation parallelism requires that tables are partitioned. If the
partitions of a table are assigned to different nodes and disks, they can be scanned
simultaneously. This shortens the response times of the overall query. The big advantage is that
queries on extremely large tables can still be processed with fast response times. Intra-
operation parallelism is especially relevant for complex analytical queries because of the need
to process huge amounts of data.

Note that this whole notion of parallelization is hidden for SQL developers. This is an aspect of
the storage independency property of SQL. Developers don’t and shouldn’t have to indicate
how to parallelize queries. Else, it would make the queries too dependent on the current storage
and partitioning structure of the tables.

Parallelizing SQL Queries – But how easy is it for a database server to parallelize queries, or how
easy is it to offload processing from the Master to the Workers? In other words, which
operations can be executed in parallel by the Workers?

A few examples are used to show how complex parallelization can be. We start with the
following simple query:

SELECT ID, SALES_DATE, PRICE
FROM SALES_RECORDS
WHERE PRICE > 100

For most database servers this query is easy to parallelize its execution. The Master can send
the entire query as a snippet to each Worker. Each of the Workers only returns those rows (and
a few columns) for which the condition PRICE > 100 is true. The effect is that the processing of the
entire query is parallelized. The only thing left for the Master to do is to combine the results from
the Workers using a simple union operation.

But what if a condition contains complex calculations, or a subquery, or if it invokes a complex
UDF? Hopefully, the database server is smart enough to include all these operations inside the
query snippets to be sure that the Workers return the smallest possible results, and the Master
only has to combine and sort these results and return them to the application. If this doesn’t
happen and too many rows are retrieved from the disk and are send back to the Master, the
Master has to perform all the extra processing serially.

When the Master has to do a lot of processing, it becomes the bottleneck of the entire system.
This has a negative impact on the scalability of the system. Adding more Workers to the
architecture doesn’t solve that problem; as reflected in Figure 4. The overall performance
suffers, because too much query processing is not executed in parallel. Note that this does not
apply to Teradata database servers.

Discovering Business Insights in Big Data Using SQL-MapReduce 22

Copyright © 2013 R20/Consultancy, all rights reserved.

number of Workers

to
ta

l t
hr

ou
gh

pu
t

bottleneck

Figure 4 When the Master must do too
much processing, it becomes a
bottleneck that severely limits the
scalability of the entire system.

Most analytical queries contain group-by operations. The next example retrieves sales data per
region and contains such an operation:

SELECT REGION_ID, SUM(PRICE)
FROM SALES_RECORDS
WHERE PRICE > 100
GROUP BY REGION_ID

For many database servers it’s hard or even impossible to perform group-by operations in
parallel if the records in the SALES_RECORDS table have not been partitioned on the column REGION_ID.
In such a situation, they probably send the following query snippet to each of the Workers:

SELECT REGION_ID, PRICE
FROM SALES_RECORDS
WHERE PRICE > 100

This snippet doesn’t contain any group-by operation. The consequence is that many rows are
returned to the Master, and the whole group-by operation is executed serially by the Master.
Normally, a group-by operation groups sets of rows into individual rows, therefore it’s much
more efficient if the group-by operations are processed by the Workers, because a much
smaller set of rows is returned.

The first query in Section 5.2 is the next example. What should an optimizer do with the
correlated subquery? What we don’t want is that the subquery is executed for each row in each
table, because it’s inefficient. Plus, it means that for each row the subquery is send to the Master
for processing, and this happens over and over again. In addition, if the table accessed in the
subquery is large, it will be very slow. Conclusion, it’s difficult to come up with a fully
parallelized access plan for this query.

Time-series based queries are also hard to parallelize. In these queries, rows are selected
based on a row’s values and the values of the previous or next row. For example, imagine rows
have to be selected where the value of a column is greater than the value of the same column in
the previous row. Most database servers process this query by letting the Workers return all the

Discovering Business Insights in Big Data Using SQL-MapReduce 23

Copyright © 2013 R20/Consultancy, all rights reserved.

rows to the Master and by letting the row selection process be handled by the Master itself.
Evidently, this is inefficient.

Parallelizing Function Processing – Parallelizing simple scalar functions is not that difficult for most
database servers. They push the processing of those functions down to the Workers. For
example, if the comparison function(column) = value is included in a condition, its processing can
be distributed to all the Workers, and each Worker only returns those rows to the Master that
adhere to this condition. This assumes that all the data needed to evaluate the condition is
available in the row being studied.

Parallelizing complex functions is much more difficult. Imagine that a scalar function called
NEXT_FLIGHT has been developed that simplifies the long query in Section 5.2. This function
determines whether another flight departs to the same city within one hour. This function has
three input parameters and returns a 1 if another flight is available, and 0 if there isn’t. A rewrite
of the query but now using the function looks like this:

SELECT *
FROM DEPARTURES AS D1
WHERE DESTINATION = 'London'
AND NEXT_FLIGHT('London', DEPARTURE_DAY, DEPARTURE_TIME) = 1
ORDER BY DEPARTURE_TIME

Obviously, due to this function, it’s easier to write the SQL statement. But does it have a better
performance? Probably not. In which way the function is written, it must use one or more extra
queries to find another row. There is no other way to get to others row than by using SQL
statements, and this is regardless of the language in which the function is coded. If these extra
queries are executed, they are sent to the Master that has to determine how to execute them. If
this is done for each row, an avalanche of queries is returned to the Master. Evidently, this is a
very time consuming process.

Some functions are deterministic. A deterministic function returns the same value every time it’s
executed. When such a function is used in a query, the Master can execute it first and substitute
the function call in the condition by its return value. The Master can then send the query snippet
with the substitution to the Workers. In this case, the Workers won’t invoke extra queries and the
function processing can easily be parallelized.

However, in the above SQL example, the function is not deterministic. For each individual row
the function must be executed, thus for each row, a query has to be executed. So, instead of
processing one query, the database server must process millions of small queries. This is not
efficient. Note that it’s not the procedural code that creates the problems, but the additional
queries inside the function.

Parallelizing SQL Queries and Schema-On-Read – Section 5.1 describes the different forms of handling
schemas in databases. If schema-on-database-read is used, somehow the SQL queries have to
be extended with the logic to determine the schema for the schema-less values before the data
is transmitted to the applications.

SQL functions can be developed to handle the process of assigning schemas to values. If this
logic is straightforward enough to be implemented as simple scalar functions, the Workers can
process it in parallel. However, when complex functionality is involved, it may have to be

Discovering Business Insights in Big Data Using SQL-MapReduce 24

Copyright © 2013 R20/Consultancy, all rights reserved.

implemented as complex table functions. This increases the chance that the processing of
these functions is not handled by the Workers, but must be executed by the Master. This
influences the scalability and performance of the system negatively. In this case, it’s better to
change from schema-on-database-read to schema-on-application-read.

Summary – Performance and scalability are crucial for a discovery platform. Therefore, it’s
important that the platform runs complex queries fast. Fast means that all the query processing,
including all the complex analytical operations and the complex schema-on-database-read
logic, is executed in parallel. The more logic is processed by a central component, the slower
the performance will be. Therefore, it’s important that the database server offers features to
parallelize complex queries including the function processing.

5.5 Hadoop and MapReduce in a Nutshell

The focus of the previous sections is on SQL-based systems, this one discusses NoSQL systems.
As indicated in Section 5.1, a new generation of NoSQL systems is introduced for developing
big data systems. NoSQL systems can be seen as potential technologies for developing
discovery platforms. This section describes some key NoSQL technologies, including
MapReduce, Hadoop, HDFS, and SQL-fication of Hadoop.

Introduction to MapReduce – Although MapReduce is much younger than SQL, it’s used by more
people than SQL will ever be. The reason is Google. If we search for a specific term with the
Google search engine, we use technology that is based on MapReduce. MapReduce is used for
offline batch processing to build the search indexes. Then, when someone searches for a term
with Google, the lookup is done with those indexes. So, even though we may not be aware of it,
most of us use MapReduce daily.

But what is MapReduce? In 2004 two Google engineers published an article entitled
MapReduce: Simplified Data Processing on Large Clusters10. In this article they introduced
MapReduce, a programming model for processing requests on large datasets in which the
processing can be distributed over a high number of nodes using parallel processing
capabilities. Currently, MapReduce is also an implementation used by Google and it’s been
patented11 since January 2010. Google and other companies use this programming model to
maximize parallelization and improve response times.

We emphasize that MapReduce is a programming model
and not a programming language. It’s a style of solving a
specific problem. In principle, a developer can use any
programming language for implementing a MapReduce-
based solution.

10 J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, in Proceedings of the 6th
Conference on Symposium on Operating Systems Design & Implementation - Volume 6, San Francisco, CA,
December 06 - 08, 2004.
11 J. Dean et al., System and Method for Efficient Large-scale Data Processing, United States Patent 7,650,331,
January 19, 2010.

MapReduce is a
programming mode and not
a programming language.

Discovering Business Insights in Big Data Using SQL-MapReduce 25

Copyright © 2013 R20/Consultancy, all rights reserved.

The words Map and Reduce stand for the two types of operations in which requests are split up.
Map operations are good for filtering records and for applying logic to individual values, such
as string and mathematical operations. Reduce operations are intended for combining records
with comparable values into one record. When compared with SQL, Map operations combine
the functionality of the SELECT and WHERE clauses of SQL’s SELECT statement, and Reduce operations
are like the GROUP BY clause.

The implementation of MapReduce determines how these functions are really processed. Later
in this section, we describe how MapReduce has been implemented in Hadoop.

Introduction to Hadoop – Hadoop is a software framework designed for supporting data-intensive
applications. It’s for those applications in which a continuous stream of new, incoming data has
to be stored and managed, and where all that data has to be analyzed periodically. Examples
of such applications are click stream applications that generate enormous amounts of records,
and sensor-driven application (RFID-based) that require a continuous stream of measurements
to be stored. Some of these applications literally generate thousands of records per second. All
this data needs to be stored for future use, leading to a massive amount of data storage.
Hadoop has been designed to support this type of application. In other words, it has been
designed for the world of big data.

As indicated, Hadoop has the capacity to analyze large portions of all that data. Because of this
feature, Hadoop is often positioned as a potential discovery platform, and is therefore described
in this section.

The Modules of Hadoop – Hadoop consists of a set of modules. We briefly introduce the core
modules here. For a more extensive description, we refer to Tom White’s book12 on Hadoop.

• HDFS: The foundation of Hadoop is formed by HDFS (Hadoop Distributed File System).
This module is responsible for storing and retrieving data. It’s designed and optimized to
deal with large amounts of incoming data per second and for managing enormous
amounts of data up to the petabytes. The key aspect of HDFS is that it can distribute its
data over a large number of disks and can exploit an MPP architecture. HDFS supports
a well-designed programming interface that can be used by any application. HDFS is
the only mandatory module of Hadoop, the others are all optional.

• MapReduce: The module called MapReduce, as the name suggests, implements

Google’s MapReduce programming model. This component allows that data inserts and
data queries are efficiently distributed over hundreds of nodes. Important to note is that
the programming interface of Hadoop’s MapReduce is very technical and requires a
deep understanding of the internal workings. It does not support storage independency.

• HBase: The HBase module is designed for applications that need random, real-time,

read/write access to data. It operates on top of HDFS.

• Hive: The module called Hive offers a SQL-like interface for querying data. It supports a
dialect of SQL called HiveQL. HiveQL supports the more classic features of SQL, but
some are missing, such as subqueries in the SELECT and FROM clause, and the HAVING and

12 White, Tom, Hadoop, The Definitive Guide, O’Reilly Media, 2012, third edition.

Discovering Business Insights in Big Data Using SQL-MapReduce 26

Copyright © 2013 R20/Consultancy, all rights reserved.

LIMIT clause. Internally, Hive translates the SQL statements to MapReduce batch jobs. By
doing this, the processing is parallelized.

• Pig: Next to Hive, developers can also use Pig for querying the data. The language

supported by this module is called Pig Latin and is more technical than HiveQL. In fact,
Pig Latin consists of a set of functions that slightly resemble the operators of SQL, such
as group-by, join, and select.

Processing MapReduce in Hadoop – Applications using Hadoop’s MapReduce invoke logic by
executing a set of Map and Reduce steps. During a Map step, a request is broken into smaller
requests that are distributed over the Workers (for convenience sake, the terms Masters and
Workers are used here as well). In most cases, a request is a function call (or procedure call or
method invocation depending on the programming language). These Map functions are coded
by developers and can be as complex as they want. Calls to these functions are distributed over
as many nodes as possible. Note that a strong resemblance exists here with breaking a SQL
query into multiple scan operations and distributing them over as many nodes as possible.

Let’s illustrate the Map step with a simple example. Imagine we want to execute the function
GET_TOTAL_SALES_PER_STORE on a dataset (which could be a simple file) that contains sales
transactions. For each sales transaction, the customer id, the store id, the product id, the
timestamp, and the product’s sales price is stored. So, for each individual product bought by a
customer, a record is stored in this dataset. The dataset is partitioned over all the nodes. Also,
imagine that the input parameter of this function is MIN_AMOUNT. This means that only those records
should be included in the final result whose values are higher than the value of the parameter.
The result of the function is a set of records indicating the total amount of sales for each store. In
the Map step, this call is distributed over as many nodes as possible. The resulting records are
stored in intermediate files. It’s up to the developer to determines where these files are stored.
It’s important that these files are stored in such a way that it makes parallelization of the next
step easy.

A Reduce step groups records with similar values. In fact, its operation resembles the GROUP BY
clause in SQL. This step is called Reduce, because only a reduced number of records is
returned. The result of the Reduce step is also a set of files.

A MapReduce program is not limited to having one Map and one Reduce step, many Maps and
Reduces are allowed. At the end of the last step, the application reads all the intermediate
results.

As with parallel database servers, the goal of Hadoop’s MapReduce is to minimize the amount
of data returned to the next step. The logic of the various steps is determined by the developers.
They can use any programming language construct to make these steps as efficient as
possible, they determine the order in which logic is processed, how and where processing takes
place, and where intermediate results are stored. In other words, the code inside the steps is
non-declarative and storage dependent. The big advantage is that the developer has full control
over the processing strategy. The disadvantage is that the performance is determined mainly by
the quality of the developers.

Discovering Business Insights in Big Data Using SQL-MapReduce 27

Copyright © 2013 R20/Consultancy, all rights reserved.

The Batch-Oriented Nature of MapReduce – MapReduce programs are executed as batch jobs, which
are scheduled and distributed over many nodes. In the background the process of starting and
running all those jobs is monitored and managed. Distributing and managing all these jobs,
requires additional processing. However, considering the amount of data analyzed, this
overhead of additional processing is probably acceptable for a non-interactive analytical
environment. Note that some database servers would not even be able to query so much data,
so this extra time for management is the penalty paid for being able to analyze these huge
amounts of data with an adequate performance.

The SQL-fication of Hadoop – Lately, more and more modules have been released that offer SQL
interfaces to Hadoop. Cloudera has released Impala, HortonWorks has Stinger, and MapR
technologies will release Drill. In addition, data virtualization vendors, such as Composite
Software, Denodo Technologies, and Informatica, have also made their products available for
Hadoop. SQL interfaces are becoming available for other NoSQL systems as well, such as CQL
for Cassandra. Furthermore, some SQL database servers support access to Hadoop. Aster
Database is one of them; see Section 6.3.

There is a growing demand for SQL-fication of Hadoop.
Organizations want to have an interface to Hadoop data that
is easier to use than the HDFS or MapReduce interfaces.

5.6 The Marriage of SQL and MapReduce: SQL-MapReduce

Some database vendors have combined SQL with MapReduce by creating a SQL database
server based on a MapReduce architecture. Teradata Aster Database (formerly called Aster
Data nCluster) is one of these products that have implemented SQL-MapReduce to make SQL
more suitable for analytics.

Aster Database is part of the Teradata Aster Discovery Platform, which also includes the
Teradata Aster Discovery Portfolio. The first version of Teradata Aster Database was released in
2006, and the first production deployment was in 2007. The current version 5.10 was released in
the first half of 2013.

This section describes how in Aster Database the MapReduce programming model has been
implemented to exploit parallel hardware and to fully parallelize query processing and
therefore make analytics possible even on commodity hardware. Note that other vendors have
implemented MapReduce as well, but all these implementations differ.

Teradata Aster Database’s SQL-MapReduce – From the SQL developer’s perspective, the entire
MapReduce framework is implemented as a set of external table functions that can be invoked
from SQL. This means that report developers won’t have to learn a new language. They only
have to familiarize themselves with the parameters and the way in which these table functions
must be invoked. Because the MapReduce table functions are according to E. F. Codd’s rules
for the relational model, SQL remains a declarative and storage independent language.

There is a growing demand
for SQL-fication of Hadoop.

Discovering Business Insights in Big Data Using SQL-MapReduce 28

Copyright © 2013 R20/Consultancy, all rights reserved.

The next example shows what SQL-MapReduce means to developers. We use the table plus the
complex query from Section 5.2. If this query is rewritten using a MapReduce function, the query
becomes straightforward:

SELECT *
FROM GET_NEXT_FLIGHT_1HR (ON DEPARTURES PARTITION BY DESTINATION)
WHERE DESTINATION = 'London'
ORDER BY DEPARTURE_TIME

Obviously, this query is much simpler to formulate than the original one. The FROM clause
contains the call to the MapReduce table function GET_NEXT_FLIGHT_1HR. This function has two
parameters. The first indicates the table that must be queried (DEPARTURES), and the second
specifies the column on which to group the rows (DESTINATION). The function returns a set of rows.
It determines for each row in the DEPARTURES table whether a row exists with the same destination
within one hour on the same day. Those rows form a group. The only thing the main query has
to do is to find the ones with destination London. Note that this function could have contained
the condition as well, however, the function would no longer be usable for other columns, but
only for columns containing city names.

Because of the MapReduce function, the query becomes easier to formulate, and more
importantly, Teradata Aster Database can parallelize the query with the MapReduce functions
much more easily than the original queries. The function contains the group-by operations plus
the time-series part (find another row) and both are fully parallelized.

This example doesn’t really show the power of these MapReduce functions. Therefore, let’s
rewrite the long, second query in Section 5.2 using SQL-MapReduce:

SELECT PROD_DESC1, PROD_DESC2, PROD_DESC3, COUNT(*) AS CNT
FROM BASKET_GENERATOR(
 ON (SELECT SF.STORE_ID, SF.REG_ID, SF.TRAN_NO, SF.ITEM_ID,
 SF.DT, PD.PROD_DESC, PD.PRICE
 FROM SALES_FACT SF INNER JOIN PRODUCT_DIM PD
 ON SF.ITEM_ID = PD.ITEM_ID) AS TRANSACTIONS A
 PARTITION BY STORE_ID, REG_ID, TRAN_NO, DT
 BASKET_ITEM(‘PROD_DESC')
 BASKET_SIZE('3'))
GROUP BY PROD_DESC1, PROD_DESC2, PROD_DESC3
HAVING COUNT(*) > 1000
ORDER BY COUNT(*) DESC

Again, this version of the query is much simpler, and it’s obvious that it’s easier to improve the
performance of this query. The function BASKET_GENERATOR is designed specifically for market
basket analysis. It makes it easier to formulate the query and even more importantly, all the
processing required by BASKET_GENERATOR is done in parallel, offloading almost all the analytical
processing to the Workers.

To summarize, in Teradata Aster Database when an analysis technique can be written as a
MapReduce table function, its processing is fully parallelized. This even applies to complex
forms of analysis (note that this is not true for table functions in classic SQL systems). Overall,
this is a big advantage for data scientists.

Discovering Business Insights in Big Data Using SQL-MapReduce 29

Copyright © 2013 R20/Consultancy, all rights reserved.

Schema-on-Read Functions – Because Teradata Aster Database is
able to distribute the processing of MapReduce functions
over many processors, it can support high-performance
schema-on-read. Imagine that schema-less, weblog
messages comparable to the one in Section 5.1 are stored in a table. In this case, MapReduce
functions can assign schemas to these values and return the data in a set of structured
columns. The processing of these functions may be intensive, but because the processing is
parallelized, it doesn’t hurt the query performance.

Teradata Aster Database and Hadoop – Teradata Aster Database
comes with a built-in capability called SQL-H™ for accessing
data stored in HDFS. This capability provides metadata
integration with Hadoop and makes it completely transparent
for data scientists whether data is coming from Aster’s own
database or from HDFS. The data scientists don’t have to
deal with the HDFS technical details and the low-level
interfaces nor with writing efficient Hadoop MapReduce programs. They only have to invoke the
functions to treat Hadoop data in the same way as Aster data.

The functions that access HDFS don’t use Hadoop’s MapReduce, but use Aster’s own SQL-H
technology to extract data from HDFS in a parallel way. If the query contains filters that can be
pushed down to HDFS, Aster will do so. The effect is that less data is returned to Aster and this
speeds up processing. The Hadoop data that is retrieved, is kept in memory by Aster.

To speed up the performance, the result of the query on HDFS can also be made persistent in
an Aster table. This can be useful, for example, when a result has to be reused multiple times.

Rich Set of Built-in Analytical Functions – The Teradata Aster Discovery Platform features the Teradata
Aster Discovery Portfolio which offers an extensive set of pre-built functions to support each step
of the discovery process from data acquisition to data analysis. These functions provide
capabilities for statistical analysis, relational analysis, path analysis, affinity analysis, pattern
matching, graph analysis, visualization, and text analysis (see Appendix A at the end of this
whitepaper for a list of functions currently supported). These functions can be mixed and
matched as in the following example:

SELECT * FROM nPathViz (
 ON SELECT * FROM nPath (
 ON SELECT * FROM SESSIONIZE (
 ON SELECT * FROM LOAD_FROM_TD_HADOOP
...

Here four MapReduce functions supplied with the Teradata Aster database have been nested.
First, the function LOAD_FROM_TD_HADOOP is used to extract data from Hadoop. Next, the data is
sessionized. This function prepares the complex multi-structured weblog data for analysis. Next,
the function nPath is used to identify paths in the data. This is the second form of analysis
deployed, and finally the function nPathViz is invoked to visualize the data. The result of this
query is shown in Figure 5.

Teradata Aster Database
supports high-performance

schema-on-read.

SQL-H makes it completely
transparent for data

scientists whether data is
stored in Aster’s own
database or in HDFS.

Discovering Business Insights in Big Data Using SQL-MapReduce 30

Copyright © 2013 R20/Consultancy, all rights reserved.

Figure 5 The visual result of deploying multiple analysis techniques, one after another.

Besides the visualization presented in Figure 5, Teradata Aster Discovery Portfolio provides a
rich set of visualization functions, including the one in Figure 6.

Figure 6 Data visualization
example of cart
abandonment where a
drilldown has been deployed
by product category.

6 Implementing a Discovery Platform

Data scientists can select from different solutions for implementing a discovery platform. In this
section the following five are described:

1. Classic SQL system
2. Advanced Reporting Platform
3. SQL-MapReduce System
4. Hadoop with MapReduce
5. Hadoop with SQL interface

In the coming sections, these solutions are described in detail, and Chapter 7 contains an
overall high-level comparison.

Discovering Business Insights in Big Data Using SQL-MapReduce 31

Copyright © 2013 R20/Consultancy, all rights reserved.

6.1 Solution 1: Classic SQL System

From many perspectives, the preferred solution is that data scientists use a classic SQL system
that the organization has already installed. The advantages are:

• SQL is a high-level development language that’s likely known to most data scientists.
• Many organizations already use a SQL system, so DBA’s know how to manage, tune,

and optimize it.
• A large set of reporting and analytical tools is able to exploit data stored in classic SQL

systems.
• SQL systems are very much suited to support interactive analysis where data scientists

constantly execute new SQL queries.
• The optimizers of most SQL systems are very mature and are capable of coming up with

efficient access plans for most queries.

Although an attractive option, this solution does have disadvantages:

• Each SQL system supports some simple statistical functions, and some even offer some
data sampling and data mining functionality, but no advanced statistical or visualization
functions are available. The analytical capabilities are limited and therefore additional
analytical tools are needed to fill this functionality gap.

• Most SQL systems are not data integration platforms. This means that when data stored
in the SQL system has to be integrated with data coming from other systems, the data
scientist has to organize this himself. This probably requires extra tools and redundant
storage of data. If those SQL systems can integrate their data with data from external
sources, these external sources are usually limited to SQL-like systems. Non-SQL
systems are not supported.

• Section 5.4 describes why most classic SQL systems can’t parallelize the more complex
analytical operations. This does not only severely limit the query performance of the
platform, but the data scalability as well.

• Classic SQL systems are designed and optimized for supporting schema-on-write, so
when schema-less values, such as the ones shown in Section 5.1, are stored, extra
application logic must be developed to unravel the structure hidden in these values. In
many situations, this is usually done using schema-on-application-read, thus lowering
the performance and scalability of the system.

6.2 Solution 2: Advanced Reporting and Analytical Platform

Many tools exist that offer powerful reporting and analytical capabilities. Some come with built-
in in-memory data store solutions, and others with their own disk-oriented storage solutions.
Most of them have been designed to let database servers handle the storage and processing of
data.

Discovering Business Insights in Big Data Using SQL-MapReduce 32

Copyright © 2013 R20/Consultancy, all rights reserved.

The advantages of using a reporting and analytical tool as a discovery platform are:

• Once the data is loaded into internal memory, these reporting tools definitely run queries
fast. Regardless of what the data scientists want to do with the data, the reply is almost
instantaneous. This fits the interactive style of the discovery process well.

• Most of these tools support easy-to-use graphical, user-friendly interfaces which
improves productivity.

The disadvantages of this solution are:

• Data scalability is limited. It’s true that today machines can have much more internal
memory than a few years ago, still, the amount of data to be analyzed in a big data
environment is too much to load into internal memory. In other words, data scalability is
not their strongest point.

• No reporting or analytical tool supports all the imaginable types of analysis. The
consequence is that data scientists need to switch between multiple tools (each offering
its own strengths). Mixing and matching analysis results between tools is not evident.

• More and more of these tools come with built-in data integration tools. However, the way
these modules work is that real data integration takes place after all the data has been
loaded into memory, severely limiting data scalability and performance.

• Most of these tools don’t know how to process schema-less values. Schema-on-write is
the preferred approach.

6.3 Solution 3: SQL-MapReduce System

Section 5.6 describes the SQL-MapReduce solution offered by Teradata Aster Database.
Teradata Aster Database’s internal architecture offers many advantages for implementing a
discovery platform:

• This platform offers data scalability and high-speed analysis because of its MapReduce-
based architecture, which is responsible for parallelizing most of the query and function
processing.

• Aster Database comes with a large set of pre-built analytical functions (see Appendix A)
that can be mixed and matched.

• Data scientists work with a familiar language: SQL. They don’t have to learn a complex,
low-level technical language.

• Most reporting and analytical tools support SQL and are therefore able to access the
data stored in the Aster Database and also in Hadoop. This allows the data scientists to
deploy any reporting and analytical tool they want.

• When data has to be integrated with Hadoop data, it can be accessed in a transparent
way. There is no need for data scientists to learn how to work with Hadoop.

• With the MapReduce functions, the execution of complex schema-on-database-read
logic can be parallelized.

• Aster Database comes with an integrated development environment for developing and
testing MapReduce functions and SQL statements.

• The optimizer in Aster Database is mature and can handle multi-table joins efficiently,
including queries that access Hadoop data.

Discovering Business Insights in Big Data Using SQL-MapReduce 33

Copyright © 2013 R20/Consultancy, all rights reserved.

• Like most SQL systems, Aster is well-suited for interactive analysis.

The disadvantages of this solution are:

• Although the Teradata Aster Discovery Platform supports several powerful interactive
graph forms to visualize data, such as affinity graphs and path graphs, other tools may
be needed to extend the graphical capabilities.

• Data retrieved from Hadoop is loaded into memory. The amount of data loaded can be
too much for Aster. Evidently, this is dependent on the hardware configuration. If this is
the case, the Hadoop data can be saved as a table in Aster.

• The Aster Database is designed for discovery; it’s its claim to fame. The platform is not
ideal for more classic forms of reporting. For this purpose a separate environment may
be needed.

• Some developers must learn how to write MapReduce functions. However, if a developer
has experience with one of the more modern programming languages, such as Java or
C, the learning process should be short. Note that it’s usually a small group of specialists
that develop functions, not the entire community of SQL developers. Once developed,
the SQL-MapReduce functions can then be easily invoked via standard SQL and used
by analysts and BI tools without any procedural programming knowledge.

• Although the syntax for invoking the MapReduce functions is according to the syntax of
the so-called window functions defined in the SQL standard, the SQL code to invoke the
functions is currently not portable.

6.4 Solution 4: Hadoop with MapReduce

The Hadoop modules HDFS and MapReduce together form a potential discovery platform. The
advantages are:

• Developers can write MapReduce programs that are completely parallelized when
executed. This makes this platform highly scalable.

• MapReduce functions can be developed for performing many different forms of analysis.
• MapReduce functions can be developed for performing schema-on-database-read

operations on schema-less values.
• Developers, who know all the technical characteristics of Hadoop, can fully exploit the

potential power of Hadoop.

The disadvantages of this solution are:

• Developing in MapReduce is cumbersome, because it supports a low-level interface. It
requires considerable technical skills. This requires the data scientists to develop in
Java, or outsource this work to external developers.

• MapReduce code is neither declarative nor storage independent, which has a negative
impact on productivity and maintenance; see Section 5.2.

• Because MapReduce is a batch oriented environment and programming is done in a
low-level interface, it’s not so much suited for interactive analysis.

Discovering Business Insights in Big Data Using SQL-MapReduce 34

Copyright © 2013 R20/Consultancy, all rights reserved.

• If MapReduce is used, no data stored outside HDFS can be accessed. If data from other
data sources has to be analyzed, that data has to be loaded into HDFS first. This
requires separate tools, and causes redundant data storage.

• Hadoop doesn’t come with pre-built analytical functions. These functions must be
developed by hand, a library with such modules has to be acquired, or a separate
product must be acquired.

• Programming joins that are processed in parallel is complex on MapReduce.
• Hadoop is not ideal for more classic forms of reporting. For this purpose a separate

environment may be needed.

6.5 Solution 5: Hadoop with a SQL Interface

As indicated in Section 5.5, SQL interfaces, such as HiveQL, Cloudera Impala, MapR Drill, and
HortonWorks Stinger, exist for accessing data stored in HDFS. While HiveQL accesses data in
HDFS via MapReduce, the other interfaces have their own engines to access HDFS data—they
bypass MapReduce.

All these interfaces have implemented a SQL optimizer that translates SQL queries into
programs for accessing HDFS data in parallel. The challenge of these optimizers is to come up
with access plans in which all the processing is parallelized. If some processing is not done in
parallel, the interface has to do that processing itself, which lowers query performance.

The advantages of deploying a SQL interface on HDFS are:

• A SQL interface is a higher-level interface than that of MapReduce. This improves
productivity and flexibility, which is beneficial for the interactive character of discovery.

• Because these engines run on HDFS, the solution offers a high level of data scalability.
• The products that bypass MapReduce are not batch-oriented and are therefore more

suited for interactive environments such as discovery.
• Because of their SQL interfaces, many popular reporting and analytical tools can be

used to access the data in HDFS.

The disadvantages of this solution are:

• Most Hadoop-based SQL interfaces can’t access data stored outside HDFS. As with the
previous solution, this requires that data is copied into HDFS first, which takes time,
increases storage costs, and slows down all the queries because of the increased size of
data. It has to be noted that MapR claims that the first version of Drill supports access to
other data stores than HDFS.

• These SQL interfaces do not come with pre-built analytical functions making them more
suitable for reporting than for analytics. Note that such functions can be developed.

• When analytical functions have to be developed, a low-level language must be used.
These functions cannot be developed with SQL itself.

• The optimizers in most SQL systems needed many years to mature to a level that they
could come up with efficient access plans for most queries, including multi-table joins.
The optimizers of the new SQL interfaces are young. The question is how much time they

Discovering Business Insights in Big Data Using SQL-MapReduce 35

Copyright © 2013 R20/Consultancy, all rights reserved.

need to mature? Evidently, they don’t need as many years as the SQL systems, because
they can learn from the older systems.

• Having a SQL interface doesn’t make a solution suitable for data scientists. They need
tools with user-friendly and intuitive interfaces. Most of the new SQL interfaces don’t
support integrated development environments. Although this problem may be solved
shortly by linking up with one of the many existing IDEs for SQL.

• DBAs who are familiar with managing classic SQL databases have to familiarize
themselves with the Hadoop environment. For example, they have to study how data is
backed up and recovered, and how data should be distributed efficiently.

• Not all these SQL interfaces support schema-on-read. For some, data has to be stored in
a relational way: schema-on-write.

• Most of the new SQL interfaces have only implemented a subset of the ANSI SQL
standard.

7 Comparison of Five Solutions for Implementing a Discovery Platform

In this chapter the five solutions described in the previous chapter are compared. Table 1 shows
how well the five solutions meet the requirements of a discovery platform as listed in Section 4.

Requirements for a
Discovery Platform

Classic SQL
Systems

Advanced
Reporting
and
Analytical
Platform

SQL and
MapReduce

Hadoop with
MapReduce

Hadoop with
SQL
Interface

Data scalability Medium No Yes Yes Yes
Multi data store access No Yes Yes No No
Complex, schema-less
value analysis

No No Yes Yes Yes

Data preparation
techniques

No Some Yes Yes Yes

Multiple analysis
techniques

No Yes Yes No No

Multiple analysis tools Yes No Yes No Yes
Interactive analysis Yes Yes Yes No Yes/No
High-speed analysis Medium Yes Yes Yes Yes
High development
language

Yes Yes Yes No Yes

Table 1 Comparison of the five solutions based on the requirements for a discovery platform.

Discovering Business Insights in Big Data Using SQL-MapReduce 36

Copyright © 2013 R20/Consultancy, all rights reserved.

Table 2 contains a more technical comparison of the five options.

Technical Characteristics Classic SQL
Systems

Advanced
Reporting
and
Analytical
Platform

SQL and
MapReduce

Hadoop with
MapReduce

Hadoop with
SQL
Interface

Online query processing Yes Yes Yes No Yes
Declarative and storage
independent API

Yes Yes Yes No Partially

Support for schema-on-
database-read

No No Yes Yes Yes

Pre-built analytical
functions

No Yes Yes No No

Comes with integrated
development
environment (IDE)

Yes Yes Yes No No

Efficient multi-table join
processing

Yes No Yes No No

Heterogeneous data
access

No Yes Yes No No

Not in-memory copy of
data

Yes No Yes Yes Yes

Familiarity of interface to
BI developers

High High High Low High

Accessible by most
reporting and analytical
tools

Yes No Yes No Yes

Who or what acts as
optimizer?

SQL system Underlying
data store

Aster
Database

Developer SQL
interface

Difficulty of developing
user-defined functions

Difficult Easy Easy Complex Complex

Also suitable for classic
reporting

Yes Yes No No Yes/No

Database administration
concepts familiar to data
warehouse
administrators

Yes Based on
the
underlying
data store

Yes No No

Table 2 Technical comparison of Teradata’s Aster Database and the various interfaces supported by Apache’s Hadoop.

The two Hadoop options are both more than qualified for processing and analyzing massive
amounts of data. The strength of Hadoop is the combination of two characteristics: being able
to process and store large amounts of incoming data and being able to analyze that data fast.
Hadoop is currently not ideal for interactive analytics where users can go back and forth
between queries and results, and expect instantaneous results.

In this comparison, the SQL-MapReduce scores quite favorably. The strength of SQL-
MapReduce is that it can manage large amounts of stored data, uses a familiar and high-level
development language, and supports all forms of analytics including those forms where users
interactively analyze data. In addition, Teradata Aster Database’s SQL-MapReduce

Discovering Business Insights in Big Data Using SQL-MapReduce 37

Copyright © 2013 R20/Consultancy, all rights reserved.

implementation comes with a suite of 70+ pre-packaged analytic modules and an integrated
development environment to help analysts and data scientists be productive more quickly.

Furthermore, because Teradata Aster Database supports standard SQL, interactive analysis,
and multi store data access, business analysts can use almost any type of tool to create reports
or analyze the data. In other words, this platform is not only suitable as a discovery platform, it
can also be used for more traditional forms of reporting and analysis, even when the data can
be classified as big data and contains schema-less values.

8 Technical Advantages of SQL-MapReduce

This chapter lists some of the technical advantages of Aster Database’s SQL-MapReduce
implementation when deployed as a discovery platform.

Parallelization of Complex Operations – Operations that are hard to parallelize by most database
servers, such as joins, group-by’s, complex calculations, and operations that are non-relational
by nature including most of the time-series based operations, can be implemented inside
MapReduce functions. The processing of these functions is always parallelized.

Simplification of Queries – Data scientists don’t have to concern themselves with the internal
workings of MapReduce. This simplifies the writing of many analytical queries. They only have
to study what the parameters of the MapReduce functions mean.

Efficiency of Low-level Programming Language – The MapReduce functions in Aster Database are coded
in a low-level programming language, such as Java, C++, C#, Python, and R. The low-level
programming code is compiled (when it concerns languages such as Java and C++) and
therefore executes very efficiently. No optimizer is needed to try and come up with the best
processing strategy for the function code.

Efficient Data Access – Instead of using SQL statements or so-called cursors, the function code
applies to one row and is activated for each row separately or applies to a partition. The main
advantage of the row-by-row and partition-by-partition approaches is that they are very efficient
and improve query performance. This efficiency is independent of how data is stored on disk
(i.e. it applies to row-stores, column-stores, object-stores, etc.). The programmers can determine
how efficient the code is.

Big Data Access – Aster Database comes with a built-in capability called SQL-H™ to access data
in HDFS. Developers see no difference between accessing data in an Aster database or data in
HDFS, this is all transparent. In addition, all the analytical functions that can be deployed on
data in an Aster database, can be deployed in the same way as on data in HDFS.

Schema-on-Read – Although Aster is a SQL database, it works efficiently with complex values.
MapReduce functions can be developed that transform the complex values in simple values
when the data is extracted from disk and before it’s passed to the applications. Because the
execution of these functions is parallelized, schema-on-database-read is fast.

Discovering Business Insights in Big Data Using SQL-MapReduce 38

Copyright © 2013 R20/Consultancy, all rights reserved.

Predictable Query Performance – Because function processing normally requires a fixed amount of
processing time for one row, a large proportion of query processing is predominantly function
processing the number of rows and the number of nodes that determine the performance. This
makes the query performance very predictable. For example, doubling the number of rows
probably increases the performance with a factor of two.

Linear Scalability – Due to predictable performance, the environment scales almost linearly. For
example, doubling the number of nodes and partitions could improve the performance with a
factor of (close to) two.

Extensive Set of Built-in Functions – As indicated, developers can create their own MapReduce
functions, but Aster Database also comes with a large set of powerful, built-in functions for
various forms of statistical, path, and relational analysis; see Appendix A.

Polymorphism of the Functions – If functions are coded correctly, they are polymorphic. This means
the code can be written independent of the tables and columns being accessed. It’s only when
a function call is shipped right before it’s executed to the Workers, that the code is linked to the
correct tables and columns. This is a form of late binding. The advantage is that the same type
of function doesn’t have to be written for every table and column. For example, a function can
be written that determines the top ten values of a column and it can be invoked for every column
of every table. In fact, the function GET_NEXT_FLIGHT_1HR is polymorphic because other table and
column names can be specified as parameters. And the built-in functions are all polymorphic
too.

Polymorphism should not be confused with the concept of overloading where different functions
with the same name (but with different parameters or parameter data types) can be developed.
The advantage of polymorphism is improved productivity and maintenance.

Nesting of the Functions – All the MapReduce functions can be nested, meaning the result of one
function can be passed to the next; see Section 5.6. Note that the concept of nesting is widely
used in SQL—queries, scalar functions, and views can all be nested. So, the ability to nest
MapReduce functions fits well with the language.

Discovering Business Insights in Big Data Using SQL-MapReduce 39

Copyright © 2013 R20/Consultancy, all rights reserved.

About the Author Rick F. van der Lans

Rick F. van der Lans is an independent analyst, consultant, author, and lecturer specializing in
data warehousing, business intelligence, database technology, and data virtualization. He
works for R20/Consultancy (www.r20.nl), a consultancy company he founded in 1987.

Rick is chairman of the annual European Data Warehouse and Business Intelligence
Conference (organized in London). He writes for the eminent B-eye-Network.com13 and other
websites. He introduced the business intelligence architecture called the Data Delivery Platform
in 2009 in a number of articles14 all published at BeyeNetwork.com.

He has written several books on SQL:

• Introduction to SQL, fourth edition
• SQL for MySQL Developers
• The SQL Guide to SQLite
• The SQL Guide to Ingres
• The SQL Guide to Pervasive PSQL
• The SQL Guide to Oracle

Published in 1987, his popular Introduction to SQL15 was the first English book on the market
devoted entirely to SQL. After more than twenty years, this book is still being sold, and has been
translated in several languages, including Chinese, German, and Italian. His latest book16 Data
Virtualization for Business Intelligence Systems was published in 2012.

For more information please visit www.r20.nl, or email to rick@r20.nl. You can also get in touch
with him via LinkedIn and via Twitter @Rick_vanderlans.

About Teradata and the Teradata Aster Discovery Platform

Teradata Corporation is the world’s leading analytic data solutions company, focused on
integrated data warehousing, big data analytics, and business applications. Teradata's
innovative products and services deliver data integration and business insight to empower
organizations to make the best decisions possible and achieve competitive advantage. Visit
teradata.com for details.

The Teradata Aster Discovery Platform enables organizations to accelerate analytic innovation
and competitive advantage by unlocking new value in big data. It is the market leading
discovery platform for big data that provides a complete solution for visual, interactive, fast big

13 See http://www.b-eye-network.com/channels/5087/articles/
14 See http://www.b-eye-network.com/channels/5087/view/12495
15 R.F. van der Lans, Introduction to SQL; Mastering the Relational Database Language, fourth edition, Addison-
Wesley, 2007.
16 R.F. van der Lans, Data Virtualization for Business Intelligence Systems, Morgan Kaufmann Publishers, 2012.

Discovering Business Insights in Big Data Using SQL-MapReduce 40

Copyright © 2013 R20/Consultancy, all rights reserved.

analytic applications that require minimal time and effort. The Teradata Aster Discovery
Platform comprises of Teradata Aster Database and Teradata Aster Discovery Portfolio.

Discovering Business Insights in Big Data Using SQL-MapReduce 41

Copyright © 2013 R20/Consultancy, all rights reserved.

Appendix A The Built-in Functions of Teradata Aster Database

This appendix contains a list of functions supported by Teradata Aster Database. It shows the
richness and the extensiveness.

Area Analytics

nPath: complex sequential analysis for time series analysis and
behavioral pattern analysis
nPath Extensions: count entrants, track exit paths, count children, and
generate subsequences
Cfilterviz: advanced visualizations to identify the affinity between two
products, item, entities using sigma graphs
Npathviz: advanced visualizations to interactively see specific paths or
groups of paths that a customer has taken to reach an end goal (e.g.,
service cancellation)

Path and Pattern Analysis
Discover patterns in rows of
sequential data

Attribution: attributes a value to various touch points in a customer’s
journey (online, offline, or both) towards completing a goal (e.g.,
product purchase, conference attendance, campaign response)

Histogram: function to assign values to bins
Decision Trees: function for creating a model of decisions and their
possible implications

Statistical Analysis
High-performance
processing of common
statistical calculations Approximate percentiles and distinct counts: calculate percentiles and

counts within specific variance
 Correlation: calculation that characterizes the strength of the relation

between different columns
 Regression: performs linear or logistic regression between an output

variable and a set of input variables
 Averages: calculate moving, weighted, exponential or volume-weighted

averages over a window of data
 GLM: generalized linear model function that supports logistic, linear,

log-linear regression models. Returns all parameters similar to R/SAS
 Naïve Bayes Classifier: simple probabilistic classifier that applies

Bayes Theorem to data sets
 Support Vector Machines: a supervised learning method used for

classification and regression analysis
 PCA: Principal Component Analysis transforms a set of observations

into a set of uncorrelated variables

Graph analysis: creates configurable groupings of related items from
transaction records in single pass

Graph and Relational
Analysis
Analyze patterns across
rows of data

nTree: finds shortest path from a distinct node to all other nodes in a
graph

 Other: triangle finding, square finding, clustering coefficient

Table 3 Examples of built-in functions supported by Teradata Aster Database (Source Teradata) – Continues on the next page.

Discovering Business Insights in Big Data Using SQL-MapReduce 42

Copyright © 2013 R20/Consultancy, all rights reserved.

Area Analytics

Text Processing: counts occurrences of words, identifies roots, and
tracks relative positions of words & multi-word phrases

Text Analysis
Derive patterns in textual
data nGram: split an input stream of text into individual words and phrases
 Levenshtein Distance: computes the distance between two words
 Sentiment Analysis: classify content is positive or negative (for product

review, customer feedback)*
 Text Categorization: used to label content as spam/not spam
 Entity Extraction/Rules Engine: identify addresses, phone number,

names from textual data

k-Means: clusters data into a specified number of groupings Cluster Analysis
Discover natural groupings
of data points

Canopy: partitions data into overlapping subsets within which k-means
is performed

 Minhash: buckets highly-dimensional items for cluster analysis
 Basket analysis: creates configurable groupings of related items from

transaction records in single pass
 Collaborative Filter: predicts the interests of a user by collecting

interest information from many users

Sessionization: identifies sessions from time series data in a single
pass over the data
Unpack: extracts nested data for further analysis
Pack: compress multi-column data into a single column
Antiselect: returns all columns except for specified column

Data Transformation and
utilities
Transform data for more
advanced analysis

Multicase: case statement that supports row match for multiple cases
 Pivot: convert columns to rows or rows to columns
 Log parser: generalized tool for parsing Apache logs
 XML Parser: extracts, for example, element name, attribute value, and

text from XML documents. XML data are semi-structured and parsers
create structured content out of it
SAX: provides a symbolic representation of time series data
IPGEO Mapping: takes an IP address and provides the geographical
region where the IP is located

Table 4 Examples of built-in functions supported by Teradata Aster Database (Source Teradata) - Continuation of the previous
page.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

