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1  Summary 
 
This whitepaper describes the advantages of merging the openness and productivity of SQL 
with the scalability of MapReduce to create a discovery platform that supports today’s complex 
and data-intensive analytical workload generated by data scientists. It focuses on the SQL-
MapReduce® implementation offered by Teradata through the Teradata Aster Discovery 
Platform which includes the Aster Database and Aster Discovery Portfolio. The whitepaper also 
discusses some of the alternative technologies available for developing a discovery platform, 
such as Hadoop, MapReduce, NoSQL, schema-on-read, and SQL-fication. 
 
Business intelligence users are traditionally classified based on the tools they use: users of 
reporting tools and users of analytical tools. But there is a 
third group of users, one that uses anything they can find to 
discover new insights that can lead to business benefits. 
They can benefit from reporting and analytical tools, but they 
need more, they need discovery capabilities. Discovery is 
about searching and analyzing data to find new business insights that can lead to business 
opportunities.  
 
Nowadays, analysts responsible for discovery are called data scientists. Data scientists 
commonly use all the data and all the tools they can lay their hands on. They use analytics and 
reporting to study data, but they won’t stop there. In other words, discovery is not a fancy new 
term for analytics. Analytics is just one of the many technologies used by a data scientist to 
discover new insights. 
 
The discovery process commonly followed by data scientists consists of four steps: data 
acquisition, data preparation, data analysis, and data interpretation. To support data scientists 
in this discovery process, a reporting tool or analytical tool is not sufficient, they need a feature-
rich, fast, and flexible discovery platform. Such a platform should minimally support the 
following features: 
 

• Data scalability 
• Heterogeneous data access 
• Complex value analysis 
• Data preparation techniques 
• Multiple analysis techniques 
• Multiple analysis tools 
• Interactive analysis 
• High-speed analysis 
• High-level development language 

 
Data scientists can select from different solutions for implementing a discovery platform: 
 

1. Classic SQL system 
2. Advanced Reporting Platform 
3. SQL-MapReduce System 
4. Hadoop with MapReduce 
5. Hadoop with SQL interface 

Discovery is about searching 
and analyzing data to find 

new business insights. 
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This whitepaper describes all five solutions in detail and focuses on the third one, the SQL-
MapReduce® solution. SQL-MapReduce is a framework based on a combination of SQL, which 
is the most popular database language, and a programming model created by Google called 
MapReduce. The goal of MapReduce is to distribute as much processing over as many 
processors as possible. This whitepaper describes the SQL-MapReduce implementation 
offered by the Teradata Aster Database (formerly called Aster Data nCluster). Aster Database 
is part of the Teradata Aster Discovery Platform which also includes the Teradata Aster 
Discovery Portfolio.  
 
On the outside, the Teradata Aster Database looks like any other SQL database server. It 
supports standard SQL and all the common APIs, such as ODBC and JDBC, so that it can be 
accessed by all the popular analytical and reporting tools. What’s inside makes Aster Database 
special. The product has been designed specifically for discovery and exploration of big data 
with the intention to uncover business insights. Its unique Applications-Within™ architecture 
runs analytic application logic inside the database, leveraging its massively-parallel 
architecture and SQL-MapReduce to fully parallelize the processing of complex analytical 
queries.  
 
Besides being a powerful platform for data scientists, the support for standard SQL makes Aster 
Database also suitable for more traditional query workloads such as reporting and analytics, 
thus making it a platform for business analysts as well. 
 
To summarize, extending a SQL database server with 
MapReduce creates a discovery platform that combines 
the expressive query power, openness, and productivity 
of SQL with the parallelizability and scalability of 
MapReduce. The combination has the potential to 
improve the performance of complex analytical queries 
running on large to extremely large datasets. Teradata Aster Database is a mature and robust 
implementation of SQL-MapReduce and has proven itself as a discovery platform.  
 
Note: This whitepaper is a rewrite of an older whitepaper entitled Using SQL-MapReduce for 
Advanced Analytical Queries1 and was published in September 2011. Since then, much has 
changed: the Hadoop stack has grown with several new modules, new SQL interfaces for HDFS 
have been released, new versions of Aster Database have become available, and the interest 
for big data has grown drastically. Therefore, it was decided to drastically rewrite this 
whitepaper. Some pieces of text have been reused, but major sections are new or have been 
completely revised. 
 

                                                     
1 R.F. van der Lans, Using SQL-MapReduce for Advanced Analytical Queries, September 2011. 

Teradata’s Aster Database is a 
mature and robust 

implementation of SQL-
MapReduce and has proven itself 

as a discovery platform. 
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2  Discovery and the Data Scientist 
 
Business Intelligence and Discovery – Boris Evelson of Forrester Research2 defines business 
intelligence as follows: 
 

Business intelligence is a set of methodologies, processes, architectures, and 
technologies that transform raw data into meaningful and useful information used to 
enable more effective strategic, tactical, and operational insights and decision-
making. 

 
From this definition can be derived that business intelligence is not a tool, not a technology, nor 
some design technique, but it’s everything needed to transform and present the right data in a 
form that leads to insights and improves the decision-making processes of an enterprise.  
 
The tools used by decision makers to study and analyze data, can be classified in two main 
categories: reporting tools and analytical tools. In principle, reporting tools show what has 
happened. Although the shown data may have been transformed, processed, and aggregated, 
still, the data shows the past and current situation. Typical examples of questions answered 
with reporting tools are “Show the total revenue per sales region for the last two weeks” and 
“Present a 360˚ report of a particular customer.” Dash boards are also examples of reports; 
OLAP tools with which users can look at data from every angle and at every level of detail, 
belong to this category as well, as do batch reports. 
 
Analytical tools, on the other hand, are used to find out 
what may or can happen. They use techniques such as 
predictive modeling, simulation, and forecasting. The 
result of analytics is usually not (aggregated) data but a 
set of rules. Examples of such rules are “When a 
customer buys cola and chips, there is a 75% chance he buys dipping sauce as well” and “The 
most efficient route to deliver goods to a particular set of shops is the following.” 
 
BI users can be classified based on the tools they use: reporting users and analytics users, 
where the former is usually the bigger group. But there is a third group of users, one that uses 
anything they can find to discover new insights which can lead to business benefits. They can 
benefit from reporting and analytical tools, but they need more, they need discovery 
capabilities.  
 
Discovery is about searching and analyzing data to get some new business insights that can 
lead to business opportunities. Their questions are not that straightforward so that they can be 
answered by starting up a particular report or by firing up a pre-defined analysis. Examples of 
their questions are: 
 

• What is a possible behavioral pattern of credit card usage that signifies a fraudulent 
action? 

• What are other forms of data that can help us locate deeply buried oil fields more easily? 

                                                     
2 B. Evelson, Topic Overview: Business Intelligence, November 21, 2008. 

Reporting tools show what has 
happened and analytical tools 
show what may or can happen. 
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• How high is the financial risk if a person 21 years old with no job is given a mortgage? 
 
The challenge for discoverers is that they don’t always know exactly what they are searching 
for, although they probably have a feeling or an inkling.  
 
The Data Scientist – Nowadays, we call these discoverers who 
try to gain knowledge or awareness of something not known 
before, data scientists. The data scientist has been called the 
sexiest job of the 21st century3 by the Harvard Business 
Review. But what is a data scientist and what does he do? For 
example, in an oil company, the ones responsible for analyzing soil test results to locate new oil 
fields or for analyzing new techniques to find new oil fields faster, can be classified as data 
scientists. Another clear example of a data scientist is an actuary working for an insurance 
company. Actuaries deploy mathematics, statistics, and financial theory to analyze the financial 
consequences of risk. Professors looking for cures for specific diseases by doing DNA research 
can also be classified as data scientists.  
 
Usually, data scientists use all the data and all the tools they can get their hands on. They use 
analytics and reporting, but they won’t stop there. In other words, discovery is not a fancy new 
term for analytics. Analytics is just one of the many tools used by a data scientist to get new 
insights. 
 
Although the term data scientist may be new, this profession has existed for a long time. For 
example, Napoleon Bonaparte used mathematical models to help make decisions on 
battlefields. These models were developed by mathematicians, Napoleon’s own data scientists. 
Another (famous) example of that same time period is the Minard Map4. This is a good example 
of a data scientist using geo visualization to analyze data. The map depicts the advance into 
and retreat from Russia by Napoleon’s army in 1812-1813. This army was practically destroyed 
during the retreat; the army left with 422,000 troops and came back with a mere 10,000. Charles 
Joseph Minard was clearly a data scientist. Many more examples like this can be found.  
 
Data scientists are smart people. They need business 
knowledge, they need to understand the enterprise data, 
they need to know how to deploy technology, they have to 
understand statistical techniques, visualization techniques, 
and, most importantly, they need to know how to interpret the 
results. For example, if an analysis exercise shows that the 
number of storks born has a strong correlation with the 
number of babies born one year later, data scientists should have sufficient knowledge to 
conclude that these variables do not have a direct relation, but that they are both dependent on 
a third variable, one that probably hasn’t been included in the study yet.   
 
The Data Scientist versus the Business Analyst – A traditional user of business intelligence systems is the 
business analyst. A business analyst assists end users in making informed business decisions. 
He exploits a data warehouse to uncover important facts and statistics that show an 

                                                     
3 T.H. Davenport and D.J. Patil, Data Scientist: The Sexiest Job of the 21st Century, Harvard Business Review, October 
2012. 
4 Wikipedia, see http://en.wikipedia.org/wiki/Charles_Joseph_Minard, May 2013. 

Data scientists are 
discoverers who try to gain 
knowledge or awareness of 

something not known before. 

Data scientists need to 
understand enterprise data, 

technology, statistical 
techniques, visualization 

techniques, and they need to 
be able to interpret results. 
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organization’s performance. He helps transform business needs in reports, he analyzes data 
structures, and defines business concepts. Quite often, he operates on the frontier between the 
IT department and the business departments.  
 
Data scientists and business analysts may be using the same data, but they use that data 
differently. As indicated, the discovery work of a data scientist is about searching and analyzing 
data to produce new business insights that can lead to business opportunities. The work of the 
business analyst is more concrete. He creates reports for himself and for end users, he helps 
end users to develop their own reports, and so on. 
 
The boundary between these two jobs is not as clear cut as one may expect. Business analysts 
may be doing data scientists work occasionally, and vice versa. In fact, the person working as 
data scientist today, may have the role of business analyst tomorrow.  
 

3  The Discovery Process 
 
The way data scientists work, is called the discovery process. In this chapter we list and 
describe the characteristics of this process. 
 
A Four Step Process – The discovery process consists of four steps (see also Figure 1): 
 

• Data acquisition: In this first step, data is collected from various data sources. The data 
scientist selects the data sources that may be useful for the study.  
 

• Data preparation: In this step, data is transformed, aggregated, integrated, and 
cleansed until it has the form that data scientists want for their study. For example, for 
many data mining algorithms it can be useful to transform real life values to binary 
values. 
 

• Data analysis: In this step, data is analyzed with various types of techniques, including 
simple reporting techniques; classic statistical techniques, such as forecasting, 
predictive modeling, and clustering; data mining techniques; data visualization 
techniques such as affinity visualization, path visualization, scatter clouds, geo-
visualization techniques; and time-series analysis. 
 

• Data interpretation: When the techniques and tools present results and insights, it’s still 
the responsibility of the data scientist to determine whether the results make sense. This 
requires in-depth knowledge of the business and the data, and it demands common 
sense. 

 
 

Data 
Acquisition

Data 
Preparation

Data 
Analysis

Data 
Interpre-

tation
 

 

Figure 1 The discovery process 
consists of four steps. 
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The Result of Discovery – The result of a discovery process is in most situations insights, and these 
insights are formulated as a set of rules. These rules can be simple if-then rules, for example, if 
two payments are done with the same credit card within 10 seconds, they are probably 
fraudulent. Rules can also be advanced statistical formulas indicating the relationship between 
specific variables. For example, a 10 degree rise in temperature increases sales of barbecue 
meat with 300%. Sometimes rules are sophisticated, self-learning data mining models that can 
predict customer behavior by combining historical and new incoming data. 
 
Spinoff Results – It’s not uncommon that during the discovery process unexpected insights and 
rules are found. These spinoffs can be as useful as the rules intended to be found. Remember 
Alexander Fleming who discovered penicillin by accident. There are more well-known 
examples like this. For example, chemist William Perkin wanted to invent a cure for Malaria. His 
experiments lead accidently to the first-ever synthetic dye. And don’t forget George Crum who 
discovered Coke by accident when searching for a cure for headaches.  
 
No Clear Goal – Another characteristic that shows that data scientists are different from most other 
BI users, is that their analysis work doesn’t always have a clear goal. The work they do is much 
more free format, much more research-like.  
Because the goal is not always that clear, classifying this process as “finding a needle in a 
haystack”, doesn’t always make sense. If you’re looking for a needle in a haystack, the goal is 
very clear, and with a good magnet it’s not even that complex. Discovery is much more a 
stepwise refinement process. With each step, the data scientist may get closer to useful insights. 
 
Wide Range of Analysis Techniques – As indicated, data scientists use a wide range of analysis 
techniques to discover new insights. Many well-known statistical techniques can be used to find 
rules. A data scientist should have access to all the tools and techniques he needs. He should 
also be able to mix and match them. For example, he may want to apply a time-series analysis 
first, followed by a geo-visualization of the result. Data scientists should not be restricted in 
discovering valuable insights due to the lack of tools and techniques. 
 
Data Overload Doesn’t Exist – The more data a data scientist has access to, the more discovery 
options he has. In this context, more means three things. First, it means more detailed data—no 
aggregate data. Aggregation of data can hide potential insights. Dealing with detailed data is a 
typical aspect of the big data trend. Nowadays, the technology exists to process massive 
amounts of data fast.  
Second, more means more data sources. Having access to a data warehouse is probably not 
enough for data scientists. They also need access to large files with sensor data, spreadsheet 
data, external data sources, and so on. It wouldn’t be the first time that rules are discovered by 
enriching internal business data with external data.  
Third, more means more types of data. Giving data scientists access to structured data is very 
useful, but not all the data has a very rigid structure. Data scientists may also require access to 
what some call unstructured, multi-structured, semi-structured, or poly-structured data. 
 
Data Scientists are Creators of Data – Usually, users of reporting tools don’t create their own data. 
They access data stored in a data warehouse or data mart. In some situations, it could be that 
the data the data scientists need, doesn’t even exist yet. The consequence can be that 
dedicated projects must be initiated to create and collect the required data. An interesting 
example of such a project is the Amsterdam Born Children and their Development (ABCD) 
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project. This project started in 2001 and still continues. The project tracks the health of 8,000 
children. Every so many years these children have a checkup. The goal of this long lasting study 
is to discover what the relationship is between early growth and development on the overall 
health later on in live. This study is a good example of where the right data has to be created 
first. 
 
The Discovery Process is an Iterative Process – Figure 1 suggests that the discovery process is a serial 
process: when one step is finished, the next one starts, and we never return to a previous step. 
However, less would be closer to the truth, the discovery process is very iterative. For example, 
when a data analysis step has been finished, the conclusion may be to collect more data, and 
start all over again. Even a data preparation step may lead to a return to the data acquisition 
step. In fact, this entire four-step process may have to be repeated several times before the right 
insights rise to the surface.  
 
Long Lasting Discovery Projects – Some discovery processes are completed in one day, but they can 
also last for weeks, months, and even years. For example, in April 2013, researchers working at 
the academic hospital in the city of Utrecht in The Netherlands discovered a formula that 
predicts for patients, who have had an heart attack or stroke, the risk of new health problems 
ten years later. The formula looks at fourteen variables, including age, gender, smoking habits, 
and blood pressure. This study started in January 1996 and ended in 2013. This is a good 
example of long lasting discovery projects. 
 
Actionable Discovery Results – When a discovery process is finished, the organization has 
experienced no advantages yet—no money has been made, no ROI. The discovery process has 
to be followed up by a step called Act. In this step, the gained insights have to be used or 
implemented. Examples of implementing insights are: organization policies are changed, 
decision rules are embedded in operational applications, business processes are optimized, 
customers are offered special discounts, and so on. Without the Act step, the entire discovery 
exercise has been for nothing. In other words, it’s important that discovery results are 
actionable. Note that the data scientist is not always involved in the Act. 
 

4  Requirements for a Discovery Platform 
 
To support data scientists in their discovery process, a reporting or an analytical tool is not 
sufficient. They need a feature-rich, fast, and flexible discovery platform that assists them with 
all four discovery steps. Such a platform should at least support the following features: 
 
Data Scalability – Many traditional information systems store 
and manage large numbers of records. The last years, new 
applications have been developed that store amounts of data 
magnitudes larger than those in the more traditional applications. For example, click-stream 
applications, sensor-based applications, and image processing applications all generate 
massive numbers of records per day. The amount of records stored surpasses more often than 
not hundreds of millions of records.  
Nowadays, the popular term used for such systems is big data systems. Because these systems 
store data on such a detailed level, new insights that have always been hidden, become visible. 
Therefore, a discovery platform should allow data scientists to analyze big data fast and 

A discovery platform should 
offer data scalability. 
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efficiently. In other words, a discovery platform should offer data scalability. Data scalability5 is 
the ability of a system to store, manipulate, analyze, and process ever increasing amounts of 
data without reducing overall system availability, performance, or throughput.  
 
Heterogeneous Data Access – Most users of BI systems find the data they need in the enterprise data 
warehouse or in one of the data marts. Not so for data scientists. The data they need can be 
hidden in numerous data stores of which the data warehouse is probably one. But they may also 
want to include data from external websites in their analysis 
research, results from their own tests and studies, textual 
data in documents, and so on. Data scientists are data-
greedy. For them the rule applies: more is better, because by 
being able to analyze more data, more valuable insights can reveal themselves. Therefore, to 
support the data acquisition step, a discovery platform should make it easy to access multiple 
data stores, including data stores using different technologies. In addition, the platform should 
allow the mixing and matching of data from this heterogeneous set of data stores. 
 
Analysis of Complex Values – Most data values stored in SQL 
database servers are simple numbers, strings, and dates. 
But in more and more systems, data values are complex 
values, such as weblog entries, EDIFACT message, text 
documents, and audio streams; see also Section 5.1. Obviously, these data values do have 
structure, but that structure is part of the value itself. The result is that the database server isn’t 
aware of that structure.  
The amount of complex values that organizations store is increasing. If not already, analytics of 
large sets of complex values will be on everyone’s agenda in the near future. It’s important that 
a discovery platform allows data scientists to analyze such complex values.  
 
Data Preparation Techniques – When the required data sources have been identified and have been 
made available for the data scientists, the data must be turned into a form that makes analysis 
more successful. In other words, data preparation must take place before analysis can start. 
Therefore, it’s important that a discovery platform supports many features to integrate all the 
data, transform it, cleans it, filter it, and so on. For complex values, data preparation means that 
a structure must be assigned to these values before they are analyzed. 
 
Multiple Analysis Techniques – As indicated in Chapter 3, data 
scientists should be able to use a multitude of analysis 
techniques, including simple reporting techniques; classic 
statistical techniques, such as forecasting, predictive 
modeling, and clustering; data mining techniques; data 
visualization techniques such as affinity visualization, scatter 
clouds, geo-visualization techniques; and time-series analysis. Therefore, to support the data 
analysis step, a discovery platform should offer an wide-range and integrated set of analysis 
techniques. 
 
Multiple Analysis Tools – Usually, data scientists use all kinds of tools to analyze data, ranging from 
more classical statistical tools to visualization tools. A discovery platform should allow data 
                                                     
5 Eugene Ciurana, Getting Started with NoSQL and Data Scalability, see http://refcardz.dzone.com/refcardz/getting-
started-nosql-and-data 

A discovery platform should 
be able to analyze complex 

values.  

Data scientists are data-
greedy.  

A discovery platform should 
offer an wide-range and 
integrated set of analysis 

techniques.  
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scientists to deploy all these different tools on the same data. They should be able to mix and 
match features of the analysis tools. For example, they may want to deploy a geographical 
grouping of data before it’s passed to a statistical analysis. Or, they want to sessionize weblog 
entries, then deploy a sentiment analysis, and finally, use a visualization technique. In addition, 
it should not be needed to create replicas of the data for each and every tool. This would raise 
project costs and would slow down the discovery process too much. In an ideal situation, many 
of the results created with one tool should be reusable by another tool. 
 
Interactive Analysis – The discovery process is not a serial 
process, but a highly iterative one; see Chapter 3. Therefore, 
a discovery platform must make it possible to run an 
analysis, change specifications, run the analysis again, and 
so on. A discovery platform can do this by supporting interactive analysis: when the data 
scientist wants to run a new query, he should be able to execute it right away. No scheduling of 
queries should be needed. The platform should not make data scientists wait too long between 
queries.  
 
High-Speed Analysis – It’s evident that a discovery platform offers 
high-speed analysis. Even if big data sets are analyzed 
using complex analysis algorithms, results should be 
displayed within seconds (and preferable faster than that). 
The faster an analysis is completed, the more an alternative hypothesis can be tested.  
If analysis of a potential correlation between two variables requires two hours of processing, the 
data scientist will probably only analyze the variables he thinks are of interest. If such an 
analysis only takes a few seconds, he may want to analyze them all. This increases the chance 
that valuable results are discovered. 
In addition, when performance is slow, a data scientist can lose his train of thought.  
It’s also important that a discovery platform offers high-speed analysis out-of-the-box. In other 
words, it should not be needed to first tune and optimize the database and database server 
before an analysis can start. Again, this would delay the discovery process too much. 
 
High-Level Development Language – A high-level development 
language is important for productivity and for the iterative 
nature of discovery. Data scientists should not be slowed 
down in their thinking process by the use of a low-level 
development language. In addition, it’s important that existing developments can be reused 
easily. 
 

5  Technologies for Implementing a Discovery Platform 
 
Nowadays, data scientists can choose between many different technologies and products to 
implement a powerful discovery platform. For example, they can use a classic SQL system, an 
advanced reporting and analytical environment, a SQL-MapReduce based system, a NoSQL 
system, or a mix of these solutions. Before we can answer the question what the best discovery 
platform is, some of these technologies are described in this chapter. Chapter 6 addresses the 
question what the best discovery platform is. 
 

A discovery platform should 
offer a high-level 

development language. 

A discovery platform should 
support interactive analysis.  

Out-of-the-box a discovery 
platform should offer        
high-speed analysis. 
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5.1  The World of Big Data, NoSQL, and Schemas 
 
One of the hottest trends in the IT industry is undoubtedly big data. With big data comes a new 
generation of NoSQL systems for data storage, such as Hadoop, Cassandra, and MongoDB. 
One of the key differences between NoSQL systems and the more classic SQL systems is the 
way they treat schemas. A schema describes the structure of data. Because schemas are an 
important technological concept for evaluating discovery platforms, this section explains the 
different styles of handling schemas. 
 
Big Data and Data Scientists – Big data is a blessing for data scientists, because it gives them data 
on a level of detail that may reveal insights that would be impossible to see with aggregated or 
condensed data. Imagine a utility company that measures electricity consumption once a 
month. By deploying big data systems, that same company can switch to measuring 
consumption every few seconds. Because of this higher level of detail, insights may become 
visible that have always been completely hidden.  
The interest of big data has always existed, even before the term was invented. However, most 
of the big data needs were impossible to implement with older technology or unaffordable. 
What has changed and what has given big data its position in the spotlights, is that hardware 
and software technologies have become available that have been designed specifically to 
support big data environments for reasonable prices.  
 
NoSQL – Many of the new systems for big data storage are referred to with the intriguing term 
NoSQL. The reason this name has been selected is simple: most of them do not support SQL 
nor the relational model for managing data. For example, the group NoSQL systems called 
document stores uses a more hierarchical model for organizing data, and the column-family 
stores support tables in which each record can have a different set of values. What 
distinguishes them most from the well-known SQL systems is how they handle schemas.  
 
The Schema – In SQL systems, when a table is created, a schema is assigned. A schema 
describes the structure of all the records in the table. It indicates how many columns there are, 
what the names of those columns are, what the data types are, which columns have unique 
values, and so on. All records of a table in a SQL system have the same schema. In a way, all 
records of a table inherit the schema of that table. 
 
There are two different ways for data storage systems to handle schemas, these are called 
schema-on-write and schema-on-read. Both are described in this section. 
 
Schema-on-Write – Classic SQL systems support schema-on-
write. This means that all the data written to a database has 
a schema. For each value of each record is known to which 
column of the table it belongs. A schema is not optional.  
 
Not only SQL systems use schema-on-write. Older, so-called pre-relational databases, such as 
IMS and IDMS, also support schema-on-write. In addition, when data is stored as XML 
documents, schema-on-write is used as well, because the schema of the data is known at the 
time of writing. The advantage of schema-on-write is that when an application accesses the 
data, the schema is known, and therefore it doesn’t have to apply application logic to assign a 
schema to the data during access. 

With schema-on-write all 
data written to a database 

has a schema.  
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Two forms of schema-on-write can be identified: fixed and variable.  
 
In SQL systems all records in a table have the same schema. In fact, it’s impossible for a SQL 
table to contain one row with ten columns and another row with twelve columns. This also 
means that if a new column has to be added to one record, that column must be added for 
every record. We refer to this form as fixed schema-on-write.  
 
The alternative to fixed schema-on-write is variable schema-on-write. Several NoSQL systems 
use this. When data is stored in their databases, a schema in XML, JSON, or BSON form is 
written together with the data itself, thus schema-on-write is used. However, different records in 
one and the same table (or an equivalent concept) can have different schemas. In other words, 
the schema of each record in a table varies.  
 
The advantage of variable-schema-on-write is flexibility. When a new column or element has to 
be added to only one record, it only has to be done for that one record. The other remain 
unchanged. No resource intensive operation has to be invoked to reorganize all the other 
records in the table as well. 
 
Schema-on-Read – The opposite of schema-on-write is schema-
on-read. When a database server uses schema-on-read the 
data has no schema when it’s stored. Or, more precisely, the 
database server doesn’t know what the schema is, the data 
values are like blobs of bytes. For example, the following 
long string of comma-separated values is a value without a 
schema: 
 

"Anchorage Daily News","PO Box 149001","Anchorage","AK","99514-9001","907-257-4200", 
"907-258-2157","71","","82","http://www.adn.com/",newsroom@adn.com 

 
If this string is stored as one value in a column of a SQL table, the database server doesn’t 
understand the structure of this value and will treat it as one atomic value. Such values are 
called complex values or schema-less values. Both terms are used interchangeably in this 
whitepaper. 
 
An EDIFACT message representing an invoice (the XXX code is used to separate elements) is a 
more complex example of a schema-less value: 
 

UNB+UNOA:1+005435656:1+006415160:1+060515:1434+00000000000778'XXXUNH+00000000000117+INVOIC:D:97B:UN
'XXXBGM+380+342459+9'XXXDTM+3:20060515:102'XXXRFF+ON:521052'XXXNAD+BY+792820524::16++CUMMINSMIDRANG
EENGINEPLANT'XXXNAD+SE+005435656::16++GENERALWIDGETCOMPANY'XXXCUX+1:USD'XXXLIN+1++157870:IN'XXXIMD+
F++:::WIDGET'XXXQTY+47:1020:EA'XXXALI+US'XXXMOA+203:1202.58'XXXPRI+INV:1.179'XXXLIN+2++157871:IN'XX
XIMD+F++:::DIFFERENTWIDGET'XXXQTY+47:20:EA'XXXALI+JP'XXXMOA+203:410'XXXPRI+INV:20.5'XXXUNS+S'XXXMOA
+39:2137.58'XXXALC+C+ABG'XXXMOA+8:525'XXXUNT+23+00000000000117'XXXUNZ+1+00000000000778' 

 
Someone familiar with the structure of EDIFACT messages knows what all these codes mean, 
but for the database server this is just one large value.  
 

With schema-on-read, stored 
data has no schema, the 

schema is assigned when 
reading the data.  
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The following example of a schema-less value is a record coming from a weblog: 
 

datestamp ip request 6/1/2012 11:10:19 AM 107.1.187.170 GET /x.php?u=http://studio-
5.financialcontent.com/synacor?Page=QUOTE&Ticker=DDD HTTP/1.1 6/1/2012 5:53:49 AM 107.1.2.180 GET 
/tv/3/player/vendor/Chef%20Tips/player/fiveminute/content/steak/asset/gnrc_15879500 HTTP/1.1 
6/1/2012 8:55:54 AM 107.34.51.63 GET 
/tv/3/search/content/The%20Andy%20Griffith%20Show/s/The%20Andy%20Griffith%20Show HTTP/1.1 6/1/2012 
3:12:43 PM 107.5.115.117 GET 
/tv/3/search/content/Kathie%20Lee%20Gifford's%20epic%20'Today'%20gaffe/s/Kathie%20Lee%20Gifford's%2
0epic%20'Today'%20gaffe HTTP/1.1 6/1/2012 4:48:35 PM 108.225.132.245 GET 
/tv/3/search/content/Deadliest%20Catch/s/Deadliest%20Catch HTTP/1.1 6/1/2012 10:25:12 AM 
108.246.20.125 GET /x.php?u=http://studio-5.financialcontent.com/synacor?Page=QUOTE&Ticker=DJ:DJI 
HTTP/1.1 6/1/2012 1:58:14 AM 108.246.25.117 GET 
/tv/3/player/vendor/Chef%20Tips/player/fiveminute/content/steak/asset/gnrc_15879500 HTTP/1.1 

 
Evidently, all three example values have a structure, but if these values are stored like above, 
the database server won’t understand their structure, because it doesn’t know its schema. 
There are more examples of large schema-less values that have a structure for which the 
database server doesn’t know the schema, such as text blocks, audio, and video. 
 
For applications to be able to process schema-less values, the data must be assigned a 
schema first. In other words, when the data is read, it should be assigned a schema, hence the 
name schema-on-read. 
 
Schema-on-read is not limited to NoSQL systems. SQL systems support schema-on-read as 
well. Imagine a simple SQL table consisting of two columns: one containing some kind of 
identifier and the second one containing schema-less values, that’s schema-on-read as well. 
Note that a table in a SQL system can have columns that hold values with a schema (schema-
on-write) and other columns with schema-less values (schema-on-read). 
 
Using schema-on-read has three advantages. One, it’s flexible, because new data elements 
can be added to records without having to change the schema of the table. Second, loading of 
data is fast, because the incoming data doesn’t have to be processed during the load 
process—no schema has to be assigned. The data is stored in its original form. Third, because 
the data hasn’t been given a schema, the applications can change how they want to look at the 
data without having to change the table schema. The schema is determined when the data is 
read.  
 
The main disadvantage of schema-on-read is that when data is retrieved, execution time has to 
be spend on assigning a schema to the data. Schema-on-read has two sub-forms:  
 

• With schema-on-application-read it’s the application that assigns a schema to the data. 
The schema-less data is retrieved by the database server from the data store and 
transmitted unchanged to the application. The application contains the logic that 
understands the structure and assigns a schema. 

 
• With schema-on-database-read it’s the database server that retrieves the schema-less 

data from the data store and, before it’s transmitted to the application, executes the 
logic to assign a schema. So, the application receives data with a schema. The 
advantage of schema-on-application-read is that database servers usually run on more 
powerful server platforms and are therefore able to execute the logic faster. Especially if 
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it’s a massively parallel server environment, assigning schemas, even when the values 
are highly complex, is fast because the logic to assign schemas is parallelized. In 
addition, a database server can apply filters (if relevant) so that not all the data has to be 
transmitted to the application. This speeds up overall performance. 

 
Schema-On-Read Offers Flexibility to Discovery – For discovery, storing 
all the incoming data in its original form (schema-on-read) can 
be useful, because the goal of discovery is not always clear in 
advance. Schema-on-read allows data scientists to assign 
different schemas at different times to the same data without 
the need to restructure databases. Schema-on-read fits the flexibility requirements of data 
scientists. 
 

5.2  Using SQL for Discovery 
 
Almost all database servers, young and old, support SQL. It’s the most successful database 
language ever. It’s the language implemented in the majority of available database servers, 
including those specifically designed for analytics, sometimes called analytical database 
servers. This section addresses the question whether SQL is really the right language for 
discovery?  
 
Complex SQL Queries – SQL has always been a language with very strong query capabilities. In fact, 
in the 1970s and 1980s, SQL products were primarily deployed for reporting and analytics. They 
did support transactions, but in this respect they were not as strong as the so-called 
hierarchical and network database servers, such as IMS, IDMS, and UDS. 
 
Since the 1980s, the query capabilities of SQL database servers have improved and extended 
even further. Nowadays, SQL is able to support the most complex forms of reporting and 
analytics. It’s hard to come up with a question that is impossible to formulate with SQL. The 
main challenge for a database server is to run all those queries fast? The problem is that some 
queries are complex and hard to optimize. Let’s illustrate this with a few examples. 
 
Example: The following DEPARTURES table stores the scheduled departures of flights from a specific 
airport: 
 

DEP_ID DEP_DAY DEP_TIME DESTINATION AIRLINE DURATION 
1 2010-04-01 14:20 London Delta 9:30 
2 2010-04-01 14:25 New York Southwest 4:00 
3 2010-04-01 14:50 New York American Airlines 4:15 
4 2010-04-01 15:10 London American Airlines 8:50 
: : : : : : 
16 2010-04-01 20:05 Paris Delta 8:30 
17 2010-04-01 20:15 Paris Air France 8:40 
18 2010-04-01 20:20 London Virgin 9:00 
19 2010-04-01 20:20 New York American Airlines 4:00 
20 2010-04-01 20:40 San Francisco Southwest 3:30 
21 2010-04-01 20:55 San Francisco Delta 3:50 
22 2010-04-01 21:00 New York Delta 4:10 
23 2010-04-01 21:35 London Britisch Airways 9:00 
: : : : : : 

 

Schema-on-read fits the 
flexibility requirements of 

data scientists.  
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Imagine the following user query: Get all the flights to London for which another flight exists to 
London that leaves within an hour on the same day: 
 

SELECT   * 
FROM     DEPARTURES AS D1 
WHERE    DESTINATION = 'London' 
AND      DEP_TIME + 60 MINUTES >= 
        (SELECT   MIN(DEP_TIME) 
         FROM     DEPARTURES AS D2 
         WHERE    DESTINATION = 'London' 
         AND      D2.DEP_TIME > D1.DEP_TIME 
         AND      D2.DEP_DAY = D1.DEP_DAY) 
ORDER BY DEP_TIME 

 
The result of this query is a set of rows that includes the row where the DEP_ID is equal to 1. Note 
this is a typical time-series type of query. The input data is selected according to the specified 
criteria and ordered by the specified timestamp column. 
 
For most database servers, it’s hard to process this query fast, especially if the table contains 
millions (or billions) of rows and if the DEPARTURES table has to be scanned several times. 
Additionally, if the table has been partitioned, it is questionable whether parallelization of the 
query improves the performance. 
 
Evidently, this is a simple example, and in reality this DEPARTURES table does not contain millions of 
rows. But it’s easy to come up with comparable situations and queries for which millions or even 
billions of rows have to be accessed. For example, if a credit card company wants to see 
whether two charges on a credit card didn’t happen too close together in a certain period of 
time, without any doubt massive amounts of records have to be analyzed. Or, if an organization 
wants to determine how many different internet sessions were started by one user, where a 
session is defined as a number of clicks on the website with limited time in between, again 
millions and millions of records may have to be accessed. 
 
The more complex the SQL query is and the larger the data set is, the bigger the chance a SQL 
database server is not able to come up with a fast processing strategy. Take the following 
question: Get all three items that are frequently purchased together by customers in the same 
retail transaction. This question is like a market basket analysis. The corresponding SQL query 
is lengthy and very hard to optimize for most database servers.  
 

SELECT   A.PROD_DESC AS ITEM1, B.PROD_DESC AS ITEM2, C.PROD_DESC AS ITEM3,  
         COUNT (*) AS CNT 
FROM    (SELECT   SF.STORE_ID, SF.REG_ID, SF.TRAN_NO, SF.ITEM_ID, SF.DT, PD.PROD_DESC, PD.PRICE 
         FROM     SALES_FACT SF, PRODUCT_DIM PD 
         WHERE    SF.ITEM_ID = PD.ITEM_ID) AS TRANSACTIONS A,  
        (SELECT   SF.STORE_ID, SF.REG_ID, SF.TRAN_NO, SF.ITEM_ID, SF.DT, PD.PROD_DESC, PD.PRICE 
         FROM     SALES_FACT SF, PRODUCT_DIM PD 
         WHERE    SF.ITEM_ID = PD.ITEM_ID) AS TRANSACTIONS B, 
        (SELECT   SF.STORE_ID, SF.REG_ID, SF.TRAN_NO, SF.ITEM_ID, SF.DT, PD.PROD_DESC, PD.PRICE 
         FROM     SALES_FACT SF, PRODUCT_DIM PD 
         WHERE    SF.ITEM_ID = PD.ITEM_ID) AS TRANSACTIONS C 
WHERE    A.STORE_ID = B.STORE_ID  
AND      B.STORE_ID = C.STORE_ID  
AND      A.STORE_ID = C.STORE_ID  
AND      A.REG_ID = B.REG_ID  
AND      B.REG_ID = C.REG_ID         (continues on next page) 
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AND      A.REG_ID = C.REG_ID          (continuation of previous page) 
AND      A.TRAN_NO = B.TRAN_NO 
AND      B.TRAN_NO = C.TRAN_NO  
AND      A.TRAN_NO = C.TRAN_NO  
AND      A.DT = B.DT  
AND      B.DT = C.DT  
AND      A.DT = C.DT  
AND      A.ITEM_ID <> B.ITEM_ID  
AND      A.ITEM_ID <> C.ITEM_ID  
AND      B.ITEM_ID <> C.ITEM_ID 
GROUP BY A.PROD_DESC, B.PROD_DESC, C.PROD_DESC 
HAVING   COUNT(*) > 1000 
ORDER BY COUNT(*) DESC   

 
To perform such a market basket analysis, the data warehouse has to keep track of what and 
when each individual customer buys. These tables normally contain millions and millions of 
rows. This means a highly complex query is executed on a very large database. It’s hard for 
most database servers to run this query quickly. In fact, sometimes these queries become so 
slow, that users are not allowed to run them online anymore, or worse, they are not even 
allowed to run them at all. Such a situation definitely limits the analytical capabilities. 
 
Declarativeness and Storage Independency – Why are some of those 
queries so slow and why doesn’t a database server always 
come up with a perfect processing strategy? Many factors 
influence the performance of queries, but two fundamental 
properties of SQL, declarativeness and storage indepen-
dency, have a big impact. These two properties are and 
always have been fundamental to SQL. They were the basic design principles when the 
language was initially designed in the IBM labs6, 7, 8. 
 
When SQL was developed in the 1970s, it was supposed to be a declarative language. In this 
case, declarative means that a SQL developer only has to program what has to be done, and 
not how it should be done. For example, in the next query we only specify that we’re interested 
in customers headquartered in New York: 
 

SELECT   * 
FROM     CUSTOMERS 
WHERE    LOCATION = 'New York' 

 
Nowhere in this query do we specify anything that relates to how the query should be 
processed. For example, no loops are programmed. The database server itself must determine 
how to get the requested data from the database to the user.  
 
The second property of SQL is storage independency. If a system supports storage 
independency, it hides how data is physically stored and accessed. For example, when a query 
is specified, nowhere do we specify that a particular index should be used, nor do we specify 

                                                     
6 R.F. Boyce, and D.D. Chamberlin, Using a Structured English Query Language as a Data Definition Facility, IBM RJ 
1318, December 1973. 
7 D.D. Chamberlin et al, SEQUEL 2: A unified approach to Data Definition, Manipulation and Control, IBM R&D, 
November 1976. 
8 D.D. Chamberlin, A Summary of User Experience with the SQL Data Sublanguage, IBM RJ 2767, March 1980. 

Declarativeness and storage 
independency have always 

been the two properties 
fundamental to SQL.  
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the physical location of the table, we don’t indicate that intermediate results should be kept in 
memory, or the order in which rows should be retrieved from disk. All these technical aspects 
are hidden for the SQL developers.  
 
These two language properties are independent of each other. For example, it’s possible to 
design a language that is non-declarative but storage independent, and one that is declarative 
and storage dependent. Again, SQL is both declarative and storage independent.  
 
Advantages of Declarativeness and Storage Independency – The main advantages of these two properties 
are improved productivity, maintainability, and flexibility: 
 

• Improved Productivity: Having to write declarative code and not having to deal with the 
“how” implies having to write less code. This minimizes the time needed to write code 
compared to having to write the equivalent solution in a non-declarative language. In 
addition, if developers don’t have to concern themselves with details related to storage 
and access, less code has to be designed and written. 

 
• Improved Maintainability: For maintenance the same rules apply as for productivity: less 

code implies having to maintain less code. And the storage independence property 
makes sure that the maintenance programmer doesn’t have to study the storage 
characteristics in order to make the necessary changes.  

 
• Improved Flexibility: Because SQL is storage independent, changes to the storage layer, 

such as table structures, indexes, and partitions, can be made without the need to 
change the SQL code.  

 
These properties stem from the relational model, the theory on which SQL is based. The founder 
of the relational model, Edgar F. Codd (see Figure 2), indicated in his seminal paper9, written in 
response to his receipt of the ACM Turing award, that his goal for developing the relational 
model was data independence (which relates to the term storage independency): “The most 
important motivation for the research work that resulted in the relational model was the 
objective of providing a sharp and clear boundary between the logical and physical aspects of 
database management […]. We call this the data independence objective.”  
 
Why Are SQL Queries Sometimes Slow? – Why can declarativeness and storage independency have a 
negative impact on performance? Because of these properties, a SQL database server has to 
transform a query into an access plan that describes in detail how the data should be 
accessed, joined, grouped, filtered, and so on. Such an access plan is not declarative and is not 
storage independent. It’s a precise, step-by-step description of how data should be accessed. It 
contains references to indexes and specifications on how to parallelize the query. 
 
It’s the optimizer, a module belonging to the database server, that is responsible for 
transforming a query into an access plan. The smarter an optimizer is, the faster the queries. 
Through the years, the quality of optimizers has improved, but still, for some queries it remains 
hard to come up with an efficient access plan. This is one of the main reasons why performance 
is not always perfect. 
                                                     
9 E. F. Codd, Relational Database: A Practical Foundation for Productivity, Turing Award Lecture in Communications 
of the ACM, Volume 25, Number 2, February 1982. 
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Figure 2 Edgar F. Codd’s ACM Turing Award lecture. 
 

 
 
SQL Improves Discovery Productivity – The declarativeness and 
storage independency of SQL are beneficial to productivity, 
maintenance, and flexibility. Even users with limited 
knowledge of databases can write queries. The answer to 
the question raised at the start of this section whether SQL is 
really the right language for discovery, is yes. SQL is a highly 
recommended language for data scientists to be used for preparing and analyzing data, 
because of its high productivity, high flexibility, and low maintenance. A drawback of SQL 
database servers may be that the queries that are hard to optimize may perform poorly. 
 

5.3  Functions in SQL 
 
A feature of SQL that enriches its analytical capabilities is the function. Functions are not new to 
SQL. In fact, the first versions of SQL already supported them, although those first functions 
were simple ones, such as truncate a string and calculate the square root. Through the years 
most SQL implementations have been extended with more advanced functions, some of them 
designed specifically for analytics.  
 
When discussing functions, a distinction has to be made between two groups of developers. On 
one hand, there are developers who program the functions, and on the other, there are SQL 
developers who write SQL statements that invoke the functions. To keep SQL’s declarative and 
storage independent properties intact, it’s important that SQL developers don’t need to concern 
themselves with how functions work, in which language they have been coded, and so on. That 
should only be relevant to the function developer. 
 
Functions can be classified in many different ways. In this whitepaper, the following four 
classifications are used.  
 
Built-in Functions and User-defined Functions – The first classification is based on who the function 
developer is. Each database server comes with a set of functions developed by the vendor itself. 
These are called built-in or standard functions. SQL developers have no idea in which language 

SQL is a highly 
recommended language for 
data scientists to be used for 

preparing and analyzing 
data.  
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these functions are coded, how their internal algorithms work, and whether their processing can 
be parallelized, nor do they need to know.  
 
In contrast, SQL also supports user-defined functions (UDFs). UDFs are coded by SQL 
developers themselves. This gives the developer full control over how the function is 
programmed. 
 
Whether a function is built-in or user-defined, the SQL developer doesn’t see the difference 
between those two types of functions; see the next example: 
 

SELECT   FLIGHT, TRUNCATE(DEPARTURE_TIME, MINUTES) 
FROM     DEPARTURES AS D1 
WHERE    BANK_HOLIDAY(DEPARTURE_TIME) = 1 

 
In this example, TRUNCATE is a built-in function, whilst BANK_HOLIDAY is a user-defined function that 
determines whether a specific day is a bank holiday. The developer writing the SQL statement 
doesn’t see the difference between those two types of functions. For him the SQL code is still 
declarative, while the developer, who wrote the function BANK_HOLIDAY, may have used a non-
declarative language, such as Java and C++. 
 
Scalar Functions and Table Functions – The second way of classifying functions is by the result they 
return. Functions exist that always return one scalar value, such as a string, a date, or a 
number, and there are those that return a set of rows in which each row consists of the same 
number of values. The former ones are called scalar functions, and the latter table functions.  
 
The functions TRUNCATE and BANK_HOLIDAY are both examples of scalar functions. Other examples of 
scalar functions are change a dollar value into a euro value, and subtract an average value 
from a specific row value. Scalar functions can be used, for example, in the conditions of WHERE 
clauses to select rows, or in SELECT clauses to transform values of a row.  
 
An example of a table function is LAST_FIVE_ROWS, which returns the last five rows of a table (for 
example, the ones with the highest primary key value). Another example could be a function 
that reads records from a sequential file stored outside the database and presents those 
records as rows. Table functions are mostly used in the FROM clause: 
 

SELECT   AVG(DURATION) 
FROM     LAST_FIVE_ROWS(DEPARTURES) 

 
Pure SQL, Procedural, and External Functions – The third way of classifying functions is based on the 
language used to code them: 
 

• Pure SQL functions: The bodies of these functions consist of one or two pure SQL 
statements. With pure SQL we mean the classic declarative SQL statements, such as 
INSERT, DELETE, and UPDATE. 

 
• Procedural functions: The bodies of these functions are written with declarative and non-

declarative statements, such as while-do and if-then-else. Those non-declarative 
statements are part of the SQL language itself and are processed by the database 
server. Non-declarative statements are supported by many SQL database servers, 
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including DB2, Oracle, Sybase, and Teradata. Most of these non-declarative statements 
resemble comparable Pascal and Ada statements, but are proprietary.  

 
• External functions: The bodies of these functions are developed in external languages, 

such as Java, C#, or possibly even Cobol. They may contain declarative SQL statements. 
The database server doesn’t typically process these external functions, as an 
application server or a special engine is typically responsible. 

 
Simple or Complex Functions – The fourth way of classifying functions is based on whether the body of 
the function contains queries: a simple function doesn’t, whereas a complex function does. For 
example, if a function contains only a calculation, it’s a simple function. But a function that 
determines whether the value of an input parameter is less than the average value of a column, 
probably needs to query a table, making it a complex function. 
 
Functions Enrich SQL for Discovery – When a SQL system is used 
as discovery platform, it’s important that it supports many 
built-in analytical functions and that it allows that UDFs are 
developed to enrich the analytical functionality. This way, 
SQL stays declarative and storage independent, improving 
productivity and maintenance, and making it easy to write 
SQL queries that invoke advanced analytical functions. 
 
Note: Extending SQL with functionality by adding functions is not new. For example, functions 
have been added to support manipulating and querying XML documents. Some SQL systems 
even offer functions to extend SQL statements with XPath and XQuery expressions. In this case, 
SQL operates as a host language for those other languages. Others have extended SQL by 
adding functions for data mining algorithms. 
 

5.4  Parallelization of SQL Queries and SQL Functions 
 
As indicated, performance and scalability are important to discovery. A discovery platform must 
be able to run even complex forms of analysis fast, and it should be able to do this on massive 
amounts of data. This section describes internal architectures of database servers and how 
they use parallelization to improve performance. 
 
A Parallel Database Server – To speed up query performance, most database servers can exploit 
multi-processor hardware by distributing the query processing over as many processors as 
possible. This is called parallelization of queries. This section explains why parallelizing queries 
can improve performance, but that some queries are hard to parallelize. We begin by 
introducing some terminology. 
 
In order to distribute query processing over multiple processors, the architecture of many 
database servers is distributed. Figure 3 shows the typical architecture for a parallel database 
server. The database server has processing modules, frequently called nodes. One of those 
nodes is called the Master or the Queen, and the other nodes are Workers. Each Worker 
manages a number of tables or table partitions. Usually, the Master knows where all the data is 

When a SQL system is used 
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stored. The Master and the Workers can run on different processors in one single machine, or 
they can be distributed over a network or cluster of machines. 
 
 

Master

Worker Worker Worker

SQL Query

Database
Server

 
 

Figure 3 Typical architecture for parallel 
database servers. 

 

 
When an application sends a query to the database server, it’s first transmitted to the Master; 
that’s where all the processing starts. The Master breaks a query in a number of smaller 
queries depending on which tables are accessed, on which nodes those tables are located, and 
how the table rows are partitioned. Next, these so-called query snippets are distributed across 
the Workers. The Workers process the query snippets and return intermediate results back to 
the Master. The Master merges all those intermediate results into one final result, if needed it 
does some extra processing, and the final result is returned to the application. 
 
In some database server architectures, a Worker can also play the role of Master. In other 
words, when such a Worker receives a query snippet, that snippet is broken into even smaller 
snippets and those are shipped to lower level Workers. These Workers return their results back 
to the Worker/Master. The latter combines all these results and returns the combined result to 
the real Master. This process continues for every level of Workers. This type of architecture 
makes it possible to exploit clusters with high numbers of processors.  
 
The main goal of this architecture is to let the Workers do as much as possible of the query 
processing in parallel, and to let the Master(s) do as little as possible, so that the Master doesn’t 
become the bottleneck. 
 
Different Forms of Query Parallelization – Different forms of query parallelization exist. Inter-query 
parallelism means the query workload is parallelized: different queries run on different 
processors. Another form, called intra-query parallelism, is where the processing required for 
one particular query is distributed over multiple processors. The first form improves the 
workload, whereas the second improves the response time of individual queries. 
 
Two sub-forms exist of the second form: inter-operation parallelism and intra-operation 
parallelism. Each query is broken into a set of operations for processing. An operation can be a 
sort, a scan, a join, or a projection. With inter-operation parallelism, the processing of different 
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operations (belonging to one query) is distributed over multiple processors. This can definitely 
improve the query response time. However, if one of the operations involves a scan of millions of 
rows, and that scan is not parallelized, that one operation can still take minutes to complete, 
therefore slowing down the processing of the entire query.  
 
With intra-operation parallelism the processing of an operation, such as a scan, is distributed 
over multiple nodes. Intra-operation parallelism requires that tables are partitioned. If the 
partitions of a table are assigned to different nodes and disks, they can be scanned 
simultaneously. This shortens the response times of the overall query. The big advantage is that 
queries on extremely large tables can still be processed with fast response times. Intra-
operation parallelism is especially relevant for complex analytical queries because of the need 
to process huge amounts of data.  
 
Note that this whole notion of parallelization is hidden for SQL developers. This is an aspect of 
the storage independency property of SQL. Developers don’t and shouldn’t have to indicate 
how to parallelize queries. Else, it would make the queries too dependent on the current storage 
and partitioning structure of the tables. 
 
Parallelizing SQL Queries – But how easy is it for a database server to parallelize queries, or how 
easy is it to offload processing from the Master to the Workers? In other words, which 
operations can be executed in parallel by the Workers?  
 
A few examples are used to show how complex parallelization can be. We start with the 
following simple query: 
 

SELECT   ID, SALES_DATE, PRICE 
FROM     SALES_RECORDS 
WHERE    PRICE > 100 

 
For most database servers this query is easy to parallelize its execution. The Master can send 
the entire query as a snippet to each Worker. Each of the Workers only returns those rows (and 
a few columns) for which the condition PRICE > 100 is true. The effect is that the processing of the 
entire query is parallelized. The only thing left for the Master to do is to combine the results from 
the Workers using a simple union operation. 
 
But what if a condition contains complex calculations, or a subquery, or if it invokes a complex 
UDF? Hopefully, the database server is smart enough to include all these operations inside the 
query snippets to be sure that the Workers return the smallest possible results, and the Master 
only has to combine and sort these results and return them to the application. If this doesn’t 
happen and too many rows are retrieved from the disk and are send back to the Master, the 
Master has to perform all the extra processing serially.  
 
When the Master has to do a lot of processing, it becomes the bottleneck of the entire system. 
This has a negative impact on the scalability of the system. Adding more Workers to the 
architecture doesn’t solve that problem; as reflected in Figure 4. The overall performance 
suffers, because too much query processing is not executed in parallel. Note that this does not 
apply to Teradata database servers. 
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Figure 4 When the Master must do too 
much processing, it becomes a 
bottleneck that severely limits the 
scalability of the entire system. 

 

 
Most analytical queries contain group-by operations. The next example retrieves sales data per 
region and contains such an operation: 
 

SELECT   REGION_ID, SUM(PRICE) 
FROM     SALES_RECORDS 
WHERE    PRICE > 100 
GROUP BY REGION_ID 

 
For many database servers it’s hard or even impossible to perform group-by operations in 
parallel if the records in the SALES_RECORDS table have not been partitioned on the column REGION_ID. 
In such a situation, they probably send the following query snippet to each of the Workers: 
 

SELECT   REGION_ID, PRICE 
FROM     SALES_RECORDS 
WHERE    PRICE > 100 

 
This snippet doesn’t contain any group-by operation. The consequence is that many rows are 
returned to the Master, and the whole group-by operation is executed serially by the Master. 
Normally, a group-by operation groups sets of rows into individual rows, therefore it’s much 
more efficient if the group-by operations are processed by the Workers, because a much 
smaller set of rows is returned. 
 
The first query in Section 5.2 is the next example. What should an optimizer do with the 
correlated subquery? What we don’t want is that the subquery is executed for each row in each 
table, because it’s inefficient. Plus, it means that for each row the subquery is send to the Master 
for processing, and this happens over and over again. In addition, if the table accessed in the 
subquery is large, it will be very slow. Conclusion, it’s difficult to come up with a fully 
parallelized access plan for this query.  
 
Time-series based queries are also hard to parallelize. In these queries, rows are selected 
based on a row’s values and the values of the previous or next row. For example, imagine rows 
have to be selected where the value of a column is greater than the value of the same column in 
the previous row. Most database servers process this query by letting the Workers return all the 
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rows to the Master and by letting the row selection process be handled by the Master itself. 
Evidently, this is inefficient.  
 
Parallelizing Function Processing – Parallelizing simple scalar functions is not that difficult for most 
database servers. They push the processing of those functions down to the Workers. For 
example, if the comparison function(column) = value is included in a condition, its processing can 
be distributed to all the Workers, and each Worker only returns those rows to the Master that 
adhere to this condition. This assumes that all the data needed to evaluate the condition is 
available in the row being studied. 
 
Parallelizing complex functions is much more difficult. Imagine that a scalar function called 
NEXT_FLIGHT has been developed that simplifies the long query in Section 5.2. This function 
determines whether another flight departs to the same city within one hour. This function has 
three input parameters and returns a 1 if another flight is available, and 0 if there isn’t. A rewrite 
of the query but now using the function looks like this: 
 

SELECT   * 
FROM     DEPARTURES AS D1 
WHERE    DESTINATION = 'London' 
AND      NEXT_FLIGHT('London', DEPARTURE_DAY, DEPARTURE_TIME) = 1 
ORDER BY DEPARTURE_TIME 

 
Obviously, due to this function, it’s easier to write the SQL statement. But does it have a better 
performance? Probably not. In which way the function is written, it must use one or more extra 
queries to find another row. There is no other way to get to others row than by using SQL 
statements, and this is regardless of the language in which the function is coded. If these extra 
queries are executed, they are sent to the Master that has to determine how to execute them. If 
this is done for each row, an avalanche of queries is returned to the Master. Evidently, this is a 
very time consuming process.  
 
Some functions are deterministic. A deterministic function returns the same value every time it’s 
executed. When such a function is used in a query, the Master can execute it first and substitute 
the function call in the condition by its return value. The Master can then send the query snippet 
with the substitution to the Workers. In this case, the Workers won’t invoke extra queries and the 
function processing can easily be parallelized.  
 
However, in the above SQL example, the function is not deterministic. For each individual row 
the function must be executed, thus for each row, a query has to be executed. So, instead of 
processing one query, the database server must process millions of small queries. This is not 
efficient. Note that it’s not the procedural code that creates the problems, but the additional 
queries inside the function.  
 
Parallelizing SQL Queries and Schema-On-Read – Section 5.1 describes the different forms of handling 
schemas in databases. If schema-on-database-read is used, somehow the SQL queries have to 
be extended with the logic to determine the schema for the schema-less values before the data 
is transmitted to the applications.  
 
SQL functions can be developed to handle the process of assigning schemas to values. If this 
logic is straightforward enough to be implemented as simple scalar functions, the Workers can 
process it in parallel. However, when complex functionality is involved, it may have to be 
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implemented as complex table functions. This increases the chance that the processing of 
these functions is not handled by the Workers, but must be executed by the Master. This 
influences the scalability and performance of the system negatively. In this case, it’s better to 
change from schema-on-database-read to schema-on-application-read. 
 
Summary – Performance and scalability are crucial for a discovery platform. Therefore, it’s 
important that the platform runs complex queries fast. Fast means that all the query processing, 
including all the complex analytical operations and the complex schema-on-database-read 
logic, is executed in parallel. The more logic is processed by a central component, the slower 
the performance will be. Therefore, it’s important that the database server offers features to 
parallelize complex queries including the function processing.  
 

5.5  Hadoop and MapReduce in a Nutshell 
 
The focus of the previous sections is on SQL-based systems, this one discusses NoSQL systems. 
As indicated in Section 5.1, a new generation of NoSQL systems is introduced for developing 
big data systems. NoSQL systems can be seen as potential technologies for developing 
discovery platforms. This section describes some key NoSQL technologies, including 
MapReduce, Hadoop, HDFS, and SQL-fication of Hadoop. 
 
Introduction to MapReduce – Although MapReduce is much younger than SQL, it’s used by more 
people than SQL will ever be. The reason is Google. If we search for a specific term with the 
Google search engine, we use technology that is based on MapReduce. MapReduce is used for 
offline batch processing to build the search indexes. Then, when someone searches for a term 
with Google, the lookup is done with those indexes. So, even though we may not be aware of it, 
most of us use MapReduce daily.  
 
But what is MapReduce? In 2004 two Google engineers published an article entitled 
MapReduce: Simplified Data Processing on Large Clusters10. In this article they introduced 
MapReduce, a programming model for processing requests on large datasets in which the 
processing can be distributed over a high number of nodes using parallel processing 
capabilities. Currently, MapReduce is also an implementation used by Google and it’s been 
patented11 since January 2010. Google and other companies use this programming model to 
maximize parallelization and improve response times. 
 
We emphasize that MapReduce is a programming model 
and not a programming language. It’s a style of solving a 
specific problem. In principle, a developer can use any 
programming language for implementing a MapReduce-
based solution. 
 

                                                     
10 J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, in Proceedings of the 6th 
Conference on Symposium on Operating Systems Design & Implementation - Volume 6, San Francisco, CA, 
December 06 - 08, 2004. 
11 J. Dean et al., System and Method for Efficient Large-scale Data Processing, United States Patent 7,650,331, 
January 19, 2010. 

MapReduce is a 
programming mode and not 
a programming language. 
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The words Map and Reduce stand for the two types of operations in which requests are split up. 
Map operations are good for filtering records and for applying logic to individual values, such 
as string and mathematical operations. Reduce operations are intended for combining records 
with comparable values into one record. When compared with SQL, Map operations combine 
the functionality of the SELECT and WHERE clauses of SQL’s SELECT statement, and Reduce operations 
are like the GROUP BY clause. 
 
The implementation of MapReduce determines how these functions are really processed. Later 
in this section, we describe how MapReduce has been implemented in Hadoop. 
 
Introduction to Hadoop – Hadoop is a software framework designed for supporting data-intensive 
applications. It’s for those applications in which a continuous stream of new, incoming data has 
to be stored and managed, and where all that data has to be analyzed periodically. Examples 
of such applications are click stream applications that generate enormous amounts of records, 
and sensor-driven application (RFID-based) that require a continuous stream of measurements 
to be stored. Some of these applications literally generate thousands of records per second. All 
this data needs to be stored for future use, leading to a massive amount of data storage. 
Hadoop has been designed to support this type of application. In other words, it has been 
designed for the world of big data. 
 
As indicated, Hadoop has the capacity to analyze large portions of all that data. Because of this 
feature, Hadoop is often positioned as a potential discovery platform, and is therefore described 
in this section. 
 
The Modules of Hadoop – Hadoop consists of a set of modules. We briefly introduce the core 
modules here. For a more extensive description, we refer to Tom White’s book12 on Hadoop. 
 

• HDFS: The foundation of Hadoop is formed by HDFS (Hadoop Distributed File System). 
This module is responsible for storing and retrieving data. It’s designed and optimized to 
deal with large amounts of incoming data per second and for managing enormous 
amounts of data up to the petabytes. The key aspect of HDFS is that it can distribute its 
data over a large number of disks and can exploit an MPP architecture. HDFS supports 
a well-designed programming interface that can be used by any application. HDFS is 
the only mandatory module of Hadoop, the others are all optional. 

 
• MapReduce: The module called MapReduce, as the name suggests, implements 

Google’s MapReduce programming model. This component allows that data inserts and 
data queries are efficiently distributed over hundreds of nodes. Important to note is that 
the programming interface of Hadoop’s MapReduce is very technical and requires a 
deep understanding of the internal workings. It does not support storage independency. 

 
• HBase: The HBase module is designed for applications that need random, real-time, 

read/write access to data. It operates on top of HDFS. 
 

• Hive: The module called Hive offers a SQL-like interface for querying data. It supports a 
dialect of SQL called HiveQL. HiveQL supports the more classic features of SQL, but 
some are missing, such as subqueries in the SELECT and FROM clause, and the HAVING and 

                                                     
12 White, Tom, Hadoop, The Definitive Guide, O’Reilly Media, 2012, third edition.  
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LIMIT clause. Internally, Hive translates the SQL statements to MapReduce batch jobs. By 
doing this, the processing is parallelized. 

 
• Pig: Next to Hive, developers can also use Pig for querying the data. The language 

supported by this module is called Pig Latin and is more technical than HiveQL. In fact, 
Pig Latin consists of a set of functions that slightly resemble the operators of SQL, such 
as group-by, join, and select.  

 
Processing MapReduce in Hadoop – Applications using Hadoop’s MapReduce invoke logic by 
executing a set of Map and Reduce steps. During a Map step, a request is broken into smaller 
requests that are distributed over the Workers (for convenience sake, the terms Masters and 
Workers are used here as well). In most cases, a request is a function call (or procedure call or 
method invocation depending on the programming language). These Map functions are coded 
by developers and can be as complex as they want. Calls to these functions are distributed over 
as many nodes as possible. Note that a strong resemblance exists here with breaking a SQL 
query into multiple scan operations and distributing them over as many nodes as possible. 
 
Let’s illustrate the Map step with a simple example. Imagine we want to execute the function 
GET_TOTAL_SALES_PER_STORE on a dataset (which could be a simple file) that contains sales 
transactions. For each sales transaction, the customer id, the store id, the product id, the 
timestamp, and the product’s sales price is stored. So, for each individual product bought by a 
customer, a record is stored in this dataset. The dataset is partitioned over all the nodes. Also, 
imagine that the input parameter of this function is MIN_AMOUNT. This means that only those records 
should be included in the final result whose values are higher than the value of the parameter. 
The result of the function is a set of records indicating the total amount of sales for each store. In 
the Map step, this call is distributed over as many nodes as possible. The resulting records are 
stored in intermediate files. It’s up to the developer to determines where these files are stored. 
It’s important that these files are stored in such a way that it makes parallelization of the next 
step easy. 
 
A Reduce step groups records with similar values. In fact, its operation resembles the GROUP BY 
clause in SQL. This step is called Reduce, because only a reduced number of records is 
returned. The result of the Reduce step is also a set of files.  
 
A MapReduce program is not limited to having one Map and one Reduce step, many Maps and 
Reduces are allowed. At the end of the last step, the application reads all the intermediate 
results. 
 
As with parallel database servers, the goal of Hadoop’s MapReduce is to minimize the amount 
of data returned to the next step. The logic of the various steps is determined by the developers. 
They can use any programming language construct to make these steps as efficient as 
possible, they determine the order in which logic is processed, how and where processing takes 
place, and where intermediate results are stored. In other words, the code inside the steps is 
non-declarative and storage dependent. The big advantage is that the developer has full control 
over the processing strategy. The disadvantage is that the performance is determined mainly by 
the quality of the developers.  
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The Batch-Oriented Nature of MapReduce – MapReduce programs are executed as batch jobs, which 
are scheduled and distributed over many nodes. In the background the process of starting and 
running all those jobs is monitored and managed. Distributing and managing all these jobs, 
requires additional processing. However, considering the amount of data analyzed, this 
overhead of additional processing is probably acceptable for a non-interactive analytical 
environment. Note that some database servers would not even be able to query so much data, 
so this extra time for management is the penalty paid for being able to analyze these huge 
amounts of data with an adequate performance.  
 
The SQL-fication of Hadoop – Lately, more and more modules have been released that offer SQL 
interfaces to Hadoop. Cloudera has released Impala, HortonWorks has Stinger, and MapR 
technologies will release Drill. In addition, data virtualization vendors, such as Composite 
Software, Denodo Technologies, and Informatica, have also made their products available for 
Hadoop. SQL interfaces are becoming available for other NoSQL systems as well, such as CQL 
for Cassandra. Furthermore, some SQL database servers support access to Hadoop. Aster 
Database is one of them; see Section 6.3. 
 
There is a growing demand for SQL-fication of Hadoop. 
Organizations want to have an interface to Hadoop data that 
is easier to use than the HDFS or MapReduce interfaces. 
 

5.6  The Marriage of SQL and MapReduce: SQL-MapReduce 
 
Some database vendors have combined SQL with MapReduce by creating a SQL database 
server based on a MapReduce architecture. Teradata Aster Database (formerly called Aster 
Data nCluster) is one of these products that have implemented SQL-MapReduce to make SQL 
more suitable for analytics.  
 
Aster Database is part of the Teradata Aster Discovery Platform, which also includes the 
Teradata Aster Discovery Portfolio. The first version of Teradata Aster Database was released in 
2006, and the first production deployment was in 2007. The current version 5.10 was released in 
the first half of 2013. 
 
This section describes how in Aster Database the MapReduce programming model has been 
implemented to exploit parallel hardware and to fully parallelize query processing and 
therefore make analytics possible even on commodity hardware. Note that other vendors have 
implemented MapReduce as well, but all these implementations differ.  
 
Teradata Aster Database’s SQL-MapReduce – From the SQL developer’s perspective, the entire 
MapReduce framework is implemented as a set of external table functions that can be invoked 
from SQL. This means that report developers won’t have to learn a new language. They only 
have to familiarize themselves with the parameters and the way in which these table functions 
must be invoked. Because the MapReduce table functions are according to E. F. Codd’s rules 
for the relational model, SQL remains a declarative and storage independent language. 
 

There is a growing demand 
for SQL-fication of Hadoop. 
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The next example shows what SQL-MapReduce means to developers. We use the table plus the 
complex query from Section 5.2. If this query is rewritten using a MapReduce function, the query 
becomes straightforward: 
 

SELECT   * 
FROM     GET_NEXT_FLIGHT_1HR (ON DEPARTURES PARTITION BY DESTINATION) 
WHERE    DESTINATION = 'London' 
ORDER BY DEPARTURE_TIME 

 
Obviously, this query is much simpler to formulate than the original one. The FROM clause 
contains the call to the MapReduce table function GET_NEXT_FLIGHT_1HR. This function has two 
parameters. The first indicates the table that must be queried (DEPARTURES), and the second 
specifies the column on which to group the rows (DESTINATION). The function returns a set of rows. 
It determines for each row in the DEPARTURES table whether a row exists with the same destination 
within one hour on the same day. Those rows form a group. The only thing the main query has 
to do is to find the ones with destination London. Note that this function could have contained 
the condition as well, however, the function would no longer be usable for other columns, but 
only for columns containing city names. 
 
Because of the MapReduce function, the query becomes easier to formulate, and more 
importantly, Teradata Aster Database can parallelize the query with the MapReduce functions 
much more easily than the original queries. The function contains the group-by operations plus 
the time-series part (find another row) and both are fully parallelized. 
 
This example doesn’t really show the power of these MapReduce functions. Therefore, let’s 
rewrite the long, second query in Section 5.2 using SQL-MapReduce: 

 
SELECT   PROD_DESC1, PROD_DESC2, PROD_DESC3, COUNT(*) AS CNT 
FROM     BASKET_GENERATOR( 
            ON (SELECT   SF.STORE_ID, SF.REG_ID, SF.TRAN_NO, SF.ITEM_ID,  
                         SF.DT, PD.PROD_DESC, PD.PRICE 
                FROM     SALES_FACT SF INNER JOIN PRODUCT_DIM PD 
                         ON SF.ITEM_ID = PD.ITEM_ID) AS TRANSACTIONS A 
            PARTITION BY STORE_ID, REG_ID, TRAN_NO, DT 
            BASKET_ITEM(‘PROD_DESC') 
            BASKET_SIZE('3')) 
GROUP BY PROD_DESC1, PROD_DESC2, PROD_DESC3 
HAVING   COUNT(*) > 1000 
ORDER BY COUNT(*) DESC 

 
Again, this version of the query is much simpler, and it’s obvious that it’s easier to improve the 
performance of this query. The function BASKET_GENERATOR is designed specifically for market 
basket analysis. It makes it easier to formulate the query and even more importantly, all the 
processing required by BASKET_GENERATOR is done in parallel, offloading almost all the analytical 
processing to the Workers. 
 
To summarize, in Teradata Aster Database when an analysis technique can be written as a 
MapReduce table function, its processing is fully parallelized. This even applies to complex 
forms of analysis (note that this is not true for table functions in classic SQL systems). Overall, 
this is a big advantage for data scientists.  
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Schema-on-Read Functions – Because Teradata Aster Database is 
able to distribute the processing of MapReduce functions 
over many processors, it can support high-performance 
schema-on-read. Imagine that schema-less, weblog 
messages comparable to the one in Section 5.1 are stored in a table. In this case, MapReduce 
functions can assign schemas to these values and return the data in a set of structured 
columns. The processing of these functions may be intensive, but because the processing is 
parallelized, it doesn’t hurt the query performance.  
 
Teradata Aster Database and Hadoop – Teradata Aster Database 
comes with a built-in capability called SQL-H™ for accessing 
data stored in HDFS. This capability provides metadata 
integration with Hadoop and makes it completely transparent 
for data scientists whether data is coming from Aster’s own 
database or from HDFS. The data scientists don’t have to 
deal with the HDFS technical details and the low-level 
interfaces nor with writing efficient Hadoop MapReduce programs. They only have to invoke the 
functions to treat Hadoop data in the same way as Aster data. 
 
The functions that access HDFS don’t use Hadoop’s MapReduce, but use Aster’s own SQL-H 
technology to extract data from HDFS in a parallel way. If the query contains filters that can be 
pushed down to HDFS, Aster will do so. The effect is that less data is returned to Aster and this 
speeds up processing. The Hadoop data that is retrieved, is kept in memory by Aster. 
 
To speed up the performance, the result of the query on HDFS can also be made persistent in 
an Aster table. This can be useful, for example, when a result has to be reused multiple times. 
 
Rich Set of Built-in Analytical Functions – The Teradata Aster Discovery Platform features the Teradata 
Aster Discovery Portfolio which offers an extensive set of pre-built functions to support each step 
of the discovery process from data acquisition to data analysis. These functions provide 
capabilities for statistical analysis, relational analysis, path analysis, affinity analysis, pattern 
matching, graph analysis, visualization, and text analysis (see Appendix A at the end of this 
whitepaper for a list of functions currently supported). These functions can be mixed and 
matched as in the following example: 
 

SELECT * FROM nPathViz ( 
   ON SELECT * FROM nPath ( 
      ON SELECT * FROM SESSIONIZE (  
         ON SELECT * FROM LOAD_FROM_TD_HADOOP 
... 

 
Here four MapReduce functions supplied with the Teradata Aster database have been nested. 
First, the function LOAD_FROM_TD_HADOOP is used to extract data from Hadoop. Next, the data is 
sessionized. This function prepares the complex multi-structured weblog data for analysis. Next, 
the function nPath is used to identify paths in the data. This is the second form of analysis 
deployed, and finally the function nPathViz is invoked to visualize the data. The result of this 
query is shown in Figure 5. 
 
 

Teradata Aster Database 
supports high-performance 

schema-on-read. 

SQL-H makes it completely 
transparent for data 

scientists whether data is 
stored in Aster’s own 
database or in HDFS. 
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Figure 5 The visual result of deploying multiple analysis techniques, one after another. 
 
Besides the visualization presented in Figure 5, Teradata Aster Discovery Portfolio provides a 
rich set of visualization functions, including the one in Figure 6. 
 
 

 
 

Figure 6 Data visualization 
example of cart 
abandonment where a 
drilldown has been deployed 
by product category. 

 

 

6  Implementing a Discovery Platform 
 
Data scientists can select from different solutions for implementing a discovery platform. In this 
section the following five are described: 
 

1. Classic SQL system 
2. Advanced Reporting Platform 
3. SQL-MapReduce System 
4. Hadoop with MapReduce 
5. Hadoop with SQL interface 

 
In the coming sections, these solutions are described in detail, and Chapter 7 contains an 
overall high-level comparison. 
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6.1  Solution 1: Classic SQL System 
 
From many perspectives, the preferred solution is that data scientists use a classic SQL system 
that the organization has already installed. The advantages are: 
 

• SQL is a high-level development language that’s likely known to most data scientists. 
• Many organizations already use a SQL system, so DBA’s know how to manage, tune, 

and optimize it. 
• A large set of reporting and analytical tools is able to exploit data stored in classic SQL 

systems.  
• SQL systems are very much suited to support interactive analysis where data scientists 

constantly execute new SQL queries. 
• The optimizers of most SQL systems are very mature and are capable of coming up with 

efficient access plans for most queries. 
 
Although an attractive option, this solution does have disadvantages: 
 

• Each SQL system supports some simple statistical functions, and some even offer some 
data sampling and data mining functionality, but no advanced statistical or visualization 
functions are available. The analytical capabilities are limited and therefore additional 
analytical tools are needed to fill this functionality gap. 

• Most SQL systems are not data integration platforms. This means that when data stored 
in the SQL system has to be integrated with data coming from other systems, the data 
scientist has to organize this himself. This probably requires extra tools and redundant 
storage of data. If those SQL systems can integrate their data with data from external 
sources, these external sources are usually limited to SQL-like systems. Non-SQL 
systems are not supported. 

• Section 5.4 describes why most classic SQL systems can’t parallelize the more complex 
analytical operations. This does not only severely limit the query performance of the 
platform, but the data scalability as well.  

• Classic SQL systems are designed and optimized for supporting schema-on-write, so 
when schema-less values, such as the ones shown in Section 5.1, are stored, extra 
application logic must be developed to unravel the structure hidden in these values. In 
many situations, this is usually done using schema-on-application-read, thus lowering 
the performance and scalability of the system. 

 

6.2  Solution 2: Advanced Reporting and Analytical Platform 
 
Many tools exist that offer powerful reporting and analytical capabilities. Some come with built-
in in-memory data store solutions, and others with their own disk-oriented storage solutions. 
Most of them have been designed to let database servers handle the storage and processing of 
data.  
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The advantages of using a reporting and analytical tool as a discovery platform are: 
 

• Once the data is loaded into internal memory, these reporting tools definitely run queries 
fast. Regardless of what the data scientists want to do with the data, the reply is almost 
instantaneous. This fits the interactive style of the discovery process well.   

• Most of these tools support easy-to-use graphical, user-friendly interfaces which 
improves productivity. 

 
The disadvantages of this solution are: 
 

• Data scalability is limited. It’s true that today machines can have much more internal 
memory than a few years ago, still, the amount of data to be analyzed in a big data 
environment is too much to load into internal memory. In other words, data scalability is 
not their strongest point. 

• No reporting or analytical tool supports all the imaginable types of analysis. The 
consequence is that data scientists need to switch between multiple tools (each offering 
its own strengths). Mixing and matching analysis results between tools is not evident. 

• More and more of these tools come with built-in data integration tools. However, the way 
these modules work is that real data integration takes place after all the data has been 
loaded into memory, severely limiting data scalability and performance. 

• Most of these tools don’t know how to process schema-less values. Schema-on-write is 
the preferred approach. 

 

6.3  Solution 3: SQL-MapReduce System 
 
Section 5.6 describes the SQL-MapReduce solution offered by Teradata Aster Database. 
Teradata Aster Database’s internal architecture offers many advantages for implementing a 
discovery platform: 
 

• This platform offers data scalability and high-speed analysis because of its MapReduce-
based architecture, which is responsible for parallelizing most of the query and function 
processing. 

• Aster Database comes with a large set of pre-built analytical functions (see Appendix A) 
that can be mixed and matched. 

• Data scientists work with a familiar language: SQL. They don’t have to learn a complex, 
low-level technical language. 

• Most reporting and analytical tools support SQL and are therefore able to access the 
data stored in the Aster Database and also in Hadoop. This allows the data scientists to 
deploy any reporting and analytical tool they want. 

• When data has to be integrated with Hadoop data, it can be accessed in a transparent 
way. There is no need for data scientists to learn how to work with Hadoop. 

• With the MapReduce functions, the execution of complex schema-on-database-read 
logic can be parallelized. 

• Aster Database comes with an integrated development environment for developing and 
testing MapReduce functions and SQL statements. 

• The optimizer in Aster Database is mature and can handle multi-table joins efficiently, 
including queries that access Hadoop data. 
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• Like most SQL systems, Aster is well-suited for interactive analysis. 
 
The disadvantages of this solution are: 
 

• Although the Teradata Aster Discovery Platform supports several powerful interactive 
graph forms to visualize data, such as affinity graphs and path graphs, other tools may 
be needed to extend the graphical capabilities. 

• Data retrieved from Hadoop is loaded into memory. The amount of data loaded can be 
too much for Aster. Evidently, this is dependent on the hardware configuration. If this is 
the case, the Hadoop data can be saved as a table in Aster. 

• The Aster Database is designed for discovery; it’s its claim to fame. The platform is not 
ideal for more classic forms of reporting. For this purpose a separate environment may 
be needed. 

• Some developers must learn how to write MapReduce functions. However, if a developer 
has experience with one of the more modern programming languages, such as Java or 
C, the learning process should be short. Note that it’s usually a small group of specialists 
that develop functions, not the entire community of SQL developers. Once developed, 
the SQL-MapReduce functions can then be easily invoked via standard SQL and used 
by analysts and BI tools without any procedural programming knowledge. 

• Although the syntax for invoking the MapReduce functions is according to the syntax of 
the so-called window functions defined in the SQL standard, the SQL code to invoke the 
functions is currently not portable.  

 

6.4  Solution 4: Hadoop with MapReduce 
 
The Hadoop modules HDFS and MapReduce together form a potential discovery platform. The 
advantages are: 
 

• Developers can write MapReduce programs that are completely parallelized when 
executed. This makes this platform highly scalable. 

• MapReduce functions can be developed for performing many different forms of analysis.  
• MapReduce functions can be developed for performing schema-on-database-read 

operations on schema-less values.  
• Developers, who know all the technical characteristics of Hadoop, can fully exploit the 

potential power of Hadoop. 
 
The disadvantages of this solution are: 
 

• Developing in MapReduce is cumbersome, because it supports a low-level interface. It 
requires considerable technical skills. This requires the data scientists to develop in 
Java, or outsource this work to external developers.  

• MapReduce code is neither declarative nor storage independent, which has a negative 
impact on productivity and maintenance; see Section 5.2.  

• Because MapReduce is a batch oriented environment and programming is done in a 
low-level interface, it’s not so much suited for interactive analysis.  
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• If MapReduce is used, no data stored outside HDFS can be accessed. If data from other 
data sources has to be analyzed, that data has to be loaded into HDFS first. This 
requires separate tools, and causes redundant data storage. 

• Hadoop doesn’t come with pre-built analytical functions. These functions must be 
developed by hand, a library with such modules has to be acquired, or a separate 
product must be acquired. 

• Programming joins that are processed in parallel is complex on MapReduce. 
• Hadoop is not ideal for more classic forms of reporting. For this purpose a separate 

environment may be needed. 
 

6.5  Solution 5: Hadoop with a SQL Interface 
 
As indicated in Section 5.5, SQL interfaces, such as HiveQL, Cloudera Impala, MapR Drill, and 
HortonWorks Stinger, exist for accessing data stored in HDFS. While HiveQL accesses data in 
HDFS via MapReduce, the other interfaces have their own engines to access HDFS data—they 
bypass MapReduce.  
 
All these interfaces have implemented a SQL optimizer that translates SQL queries into 
programs for accessing HDFS data in parallel. The challenge of these optimizers is to come up 
with access plans in which all the processing is parallelized. If some processing is not done in 
parallel, the interface has to do that processing itself, which lowers query performance. 
 
The advantages of deploying a SQL interface on HDFS are: 
 

• A SQL interface is a higher-level interface than that of MapReduce. This improves 
productivity and flexibility, which is beneficial for the interactive character of discovery.  

• Because these engines run on HDFS, the solution offers a high level of data scalability. 
• The products that bypass MapReduce are not batch-oriented and are therefore more 

suited for interactive environments such as discovery.  
• Because of their SQL interfaces, many popular reporting and analytical tools can be 

used to access the data in HDFS. 
 
The disadvantages of this solution are: 
 

• Most Hadoop-based SQL interfaces can’t access data stored outside HDFS. As with the 
previous solution, this requires that data is copied into HDFS first, which takes time, 
increases storage costs, and slows down all the queries because of the increased size of 
data. It has to be noted that MapR claims that the first version of Drill supports access to 
other data stores than HDFS. 

• These SQL interfaces do not come with pre-built analytical functions making them more 
suitable for reporting than for analytics. Note that such functions can be developed. 

• When analytical functions have to be developed, a low-level language must be used. 
These functions cannot be developed with SQL itself. 

• The optimizers in most SQL systems needed many years to mature to a level that they 
could come up with efficient access plans for most queries, including multi-table joins. 
The optimizers of the new SQL interfaces are young. The question is how much time they 
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need to mature? Evidently, they don’t need as many years as the SQL systems, because 
they can learn from the older systems. 

• Having a SQL interface doesn’t make a solution suitable for data scientists. They need 
tools with user-friendly and intuitive interfaces. Most of the new SQL interfaces don’t 
support integrated development environments. Although this problem may be solved 
shortly by linking up with one of the many existing IDEs for SQL. 

• DBAs who are familiar with managing classic SQL databases have to familiarize 
themselves with the Hadoop environment. For example, they have to study how data is 
backed up and recovered, and how data should be distributed efficiently. 

• Not all these SQL interfaces support schema-on-read. For some, data has to be stored in 
a relational way: schema-on-write. 

• Most of the new SQL interfaces have only implemented a subset of the ANSI SQL 
standard. 

 

7  Comparison of Five Solutions for Implementing a Discovery Platform 
 
In this chapter the five solutions described in the previous chapter are compared. Table 1 shows 
how well the five solutions meet the requirements of a discovery platform as listed in Section 4. 
 

Requirements for a  
Discovery Platform 

Classic SQL 
Systems 

Advanced 
Reporting 
and 
Analytical 
Platform 

SQL and 
MapReduce 

Hadoop with 
MapReduce 

Hadoop with 
SQL 
Interface 

Data scalability Medium No Yes Yes Yes 
Multi data store access No Yes Yes No No 
Complex, schema-less 
value analysis 

No No Yes Yes Yes 

Data preparation 
techniques 

No Some Yes Yes Yes 

Multiple analysis 
techniques 

No Yes Yes No No 

Multiple analysis tools Yes No Yes No Yes 
Interactive analysis Yes Yes Yes No Yes/No 
High-speed analysis Medium Yes Yes Yes Yes 
High development 
language 

Yes Yes Yes No Yes 

Table 1 Comparison of the five solutions based on the requirements for a discovery platform. 
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Table 2 contains a more technical comparison of the five options. 
 

Technical Characteristics Classic SQL 
Systems 

Advanced 
Reporting 
and 
Analytical 
Platform 

SQL and 
MapReduce 

Hadoop with 
MapReduce 

Hadoop with 
SQL 
Interface 

Online query processing Yes Yes Yes No Yes 
Declarative and storage 
independent API 

Yes Yes Yes No Partially 

Support for schema-on-
database-read 

No No Yes Yes Yes 

Pre-built analytical 
functions 

No Yes Yes No No 

Comes with integrated 
development 
environment (IDE) 

Yes Yes Yes No No 

Efficient multi-table join 
processing 

Yes No Yes No No 

Heterogeneous data 
access 

No Yes Yes No No 

Not in-memory copy of 
data 

Yes No Yes Yes Yes 

Familiarity of interface to 
BI developers 

High High High Low High 

Accessible by most 
reporting and analytical 
tools 

Yes No Yes No Yes 

Who or what acts as 
optimizer? 

SQL system Underlying 
data store 

Aster 
Database 

Developer SQL 
interface 

Difficulty of developing 
user-defined functions 

Difficult Easy Easy Complex Complex 

Also suitable for classic 
reporting 

Yes Yes No No Yes/No 

Database administration 
concepts familiar to data 
warehouse 
administrators 

Yes Based on 
the 
underlying 
data store 

Yes No No 

Table 2 Technical comparison of Teradata’s Aster Database and the various interfaces supported by Apache’s Hadoop. 
 
The two Hadoop options are both more than qualified for processing and analyzing massive 
amounts of data. The strength of Hadoop is the combination of two characteristics: being able 
to process and store large amounts of incoming data and being able to analyze that data fast. 
Hadoop is currently not ideal for interactive analytics where users can go back and forth 
between queries and results, and expect instantaneous results.  
 
In this comparison, the SQL-MapReduce scores quite favorably. The strength of SQL-
MapReduce is that it can manage large amounts of stored data, uses a familiar and high-level 
development language, and supports all forms of analytics including those forms where users 
interactively analyze data. In addition, Teradata Aster Database’s SQL-MapReduce 
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implementation comes with a suite of 70+ pre-packaged analytic modules and an integrated 
development environment to help analysts and data scientists be productive more quickly. 
 
Furthermore, because Teradata Aster Database supports standard SQL, interactive analysis, 
and multi store data access, business analysts can use almost any type of tool to create reports 
or analyze the data. In other words, this platform is not only suitable as a discovery platform, it 
can also be used for more traditional forms of reporting and analysis, even when the data can 
be classified as big data and contains schema-less values. 
 

8  Technical Advantages of SQL-MapReduce 
 
This chapter lists some of the technical advantages of Aster Database’s SQL-MapReduce 
implementation when deployed as a discovery platform.  
 
Parallelization of Complex Operations – Operations that are hard to parallelize by most database 
servers, such as joins, group-by’s, complex calculations, and operations that are non-relational 
by nature including most of the time-series based operations, can be implemented inside 
MapReduce functions. The processing of these functions is always parallelized.  
 
Simplification of Queries – Data scientists don’t have to concern themselves with the internal 
workings of MapReduce. This simplifies the writing of many analytical queries. They only have 
to study what the parameters of the MapReduce functions mean. 
 
Efficiency of Low-level Programming Language – The MapReduce functions in Aster Database are coded 
in a low-level programming language, such as Java, C++, C#, Python, and R. The low-level 
programming code is compiled (when it concerns languages such as Java and C++) and 
therefore executes very efficiently. No optimizer is needed to try and come up with the best 
processing strategy for the function code.  
 
Efficient Data Access – Instead of using SQL statements or so-called cursors, the function code 
applies to one row and is activated for each row separately or applies to a partition. The main 
advantage of the row-by-row and partition-by-partition approaches is that they are very efficient 
and improve query performance. This efficiency is independent of how data is stored on disk 
(i.e. it applies to row-stores, column-stores, object-stores, etc.). The programmers can determine 
how efficient the code is.  
 
Big Data Access – Aster Database comes with a built-in capability called SQL-H™ to access data 
in HDFS. Developers see no difference between accessing data in an Aster database or data in 
HDFS, this is all transparent. In addition, all the analytical functions that can be deployed on 
data in an Aster database, can be deployed in the same way as on data in HDFS. 
 
Schema-on-Read – Although Aster is a SQL database, it works efficiently with complex values. 
MapReduce functions can be developed that transform the complex values in simple values 
when the data is extracted from disk and before it’s passed to the applications. Because the 
execution of these functions is parallelized, schema-on-database-read is fast. 
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Predictable Query Performance – Because function processing normally requires a fixed amount of 
processing time for one row, a large proportion of query processing is predominantly function 
processing the number of rows and the number of nodes that determine the performance. This 
makes the query performance very predictable. For example, doubling the number of rows 
probably increases the performance with a factor of two. 
  
Linear Scalability – Due to predictable performance, the environment scales almost linearly. For 
example, doubling the number of nodes and partitions could improve the performance with a 
factor of (close to) two. 
 
Extensive Set of Built-in Functions – As indicated, developers can create their own MapReduce 
functions, but Aster Database also comes with a large set of powerful, built-in functions for 
various forms of statistical, path, and relational analysis; see Appendix A. 
 
Polymorphism of the Functions – If functions are coded correctly, they are polymorphic. This means 
the code can be written independent of the tables and columns being accessed. It’s only when 
a function call is shipped right before it’s executed to the Workers, that the code is linked to the 
correct tables and columns. This is a form of late binding. The advantage is that the same type 
of function doesn’t have to be written for every table and column. For example, a function can 
be written that determines the top ten values of a column and it can be invoked for every column 
of every table. In fact, the function GET_NEXT_FLIGHT_1HR is polymorphic because other table and 
column names can be specified as parameters. And the built-in functions are all polymorphic 
too. 
 
Polymorphism should not be confused with the concept of overloading where different functions 
with the same name (but with different parameters or parameter data types) can be developed. 
The advantage of polymorphism is improved productivity and maintenance. 
 
Nesting of the Functions – All the MapReduce functions can be nested, meaning the result of one 
function can be passed to the next; see Section 5.6. Note that the concept of nesting is widely 
used in SQL—queries, scalar functions, and views can all be nested. So, the ability to nest 
MapReduce functions fits well with the language. 
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analytic applications that require minimal time and effort. The Teradata Aster Discovery 
Platform comprises of Teradata Aster Database and Teradata Aster Discovery Portfolio. 
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Appendix A  The Built-in Functions of Teradata Aster Database 
 
This appendix contains a list of functions supported by Teradata Aster Database. It shows the 
richness and the extensiveness.  
 
Area  Analytics 

nPath: complex sequential analysis for time series analysis and 
behavioral pattern analysis 
nPath Extensions: count entrants, track exit paths, count children, and 
generate subsequences 
Cfilterviz: advanced visualizations to identify the affinity between two 
products, item, entities using sigma graphs 
Npathviz: advanced visualizations  to interactively see specific paths or 
groups of paths that a customer has taken to reach an end goal (e.g., 
service cancellation) 

Path and Pattern Analysis 
Discover patterns in rows of 
sequential data 

Attribution: attributes a value to various touch points in a customer’s 
journey (online, offline, or both) towards completing a goal (e.g., 
product purchase, conference attendance, campaign response) 

  

Histogram: function to assign values to bins 
Decision Trees: function for creating a model of decisions and their 
possible implications 

Statistical Analysis 
High-performance 
processing of common 
statistical calculations Approximate percentiles and distinct counts: calculate percentiles and 

counts within specific variance 
 Correlation: calculation that characterizes the strength of the relation 

between different columns 
 Regression: performs linear or logistic regression between an output 

variable and a set of input variables 
 Averages: calculate moving, weighted, exponential or volume-weighted 

averages over a window of data 
 GLM: generalized linear model function that supports logistic, linear, 

log-linear regression models. Returns all parameters similar to R/SAS 
 Naïve Bayes Classifier: simple probabilistic classifier that applies 

Bayes Theorem to data sets 
 Support Vector Machines: a supervised learning method used for 

classification and regression analysis 
 PCA: Principal Component Analysis transforms a set of observations 

into a set of uncorrelated variables 
  

Graph analysis: creates configurable groupings of related items from 
transaction records in single pass 

Graph and Relational 
Analysis 
Analyze patterns across 
rows of data 

nTree: finds shortest path from a distinct node to all other nodes in a 
graph 

 Other: triangle finding, square finding, clustering coefficient 

Table 3 Examples of built-in functions supported by Teradata Aster Database (Source Teradata) – Continues on the next page. 
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Area  Analytics 

Text Processing: counts occurrences of words, identifies roots, and 
tracks relative positions of words & multi-word phrases 

Text Analysis  
Derive patterns in textual 
data nGram: split an input stream of text into individual words and phrases 
 Levenshtein Distance: computes the distance between two words 
 Sentiment Analysis: classify content is positive or negative (for product 

review, customer feedback)* 
 Text Categorization: used to label content as spam/not spam 
 Entity Extraction/Rules Engine: identify addresses, phone number, 

names from textual data 
  

k-Means: clusters data into a specified number of groupings Cluster Analysis 
Discover natural groupings 
of data points 

Canopy: partitions data into overlapping subsets within which k-means 
is performed 

 Minhash: buckets highly-dimensional items for cluster analysis 
 Basket analysis: creates configurable groupings of related items from 

transaction records in single pass 
 Collaborative Filter: predicts the interests of a user by collecting 

interest information from many users 
  

Sessionization: identifies sessions from time series data in a single 
pass over the data 
Unpack: extracts nested data for further analysis 
Pack: compress multi-column data into a single column 
Antiselect: returns all columns except for specified column 

Data Transformation and 
utilities 
Transform data for more 
advanced analysis 

Multicase: case statement that supports row match for multiple cases 
 Pivot: convert columns to rows or rows to columns 
 Log parser: generalized tool for parsing Apache logs 
 XML Parser: extracts, for example, element name, attribute value, and 

text from XML documents. XML data are semi-structured and parsers 
create structured content out of it 
SAX: provides a symbolic representation of time series data 
IPGEO Mapping:  takes an IP address and provides the geographical 
region where the IP is located 

Table 4 Examples of built-in functions supported by Teradata Aster Database (Source Teradata) - Continuation of the previous 
page. 
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